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1 Introduction

LECTURE 1

1 Introduction

Organization & Resources
Comments and corrections regarding these lecture notes are very welcome and may be sent to
ga482@cam.ac.uk.

Example classes. Four example classes, each lasting two hours, will be held during the
term. For each class I will upload in advance on Moodle a corresponding Problem Sheet with
exercises for you to solve and we will discuss them in the next example class. Furthermore,
you can hand in the exercises denoted with (⋆) to me for feedback.

Resources. Lecture notes will be made available on Moodle after each class. Recordings of
the lectures can also be found there; nevertheless, regular attendance is strongly recommended,
as it substantially improves comprehension and long-term retention. The course has previously
been taught by Clément Mouhot, Claude Warnick, and Zoe Wyatt, whose lecture notes are
available on their respective webpages.

These lecture notes make no claim of originality. They draw largely on past lecture notes,
particularly by C. Mouhot, for the same course.

The principal references are:
• L. C. Evans, Partial Differential Equations. Perhaps the most widely used reference and

the closest in spirit to this course.
• H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. A stan-

dard reference, particularly in France, emphasizing the connection between Functional
Analysis and PDEs, and developing Sobolev spaces from one to several dimensions.

• F. John, Partial Differential Equations. A classical source, especially for the Cauchy-
Kovalevskaya theorem and the method of characteristics.

• E. Lieb and M. Loss, Analysis.
• S. Klainerman, Partial Differential Equations (Princeton Companion to Mathematics). An

introductory essay offering a broad overview of the field of partial differential equations.

1.1 Overview of the course
Historical remarks. From infinitesimal calculus to PDEs The modern Analysis of Partial
Differential Equations (PDEs) originates in the late 17th century with Newton and Leibniz,
whose invention of differential calculus (building on earlier ideas such as Archimedes’ method
of exhaustion) marked the birth of modern physics. Calculus provided a universal language to
describe continuous change, allowing physical laws to be formulated as differential equations
(initially in a single variable). These equations could then be studied to make both qualitative
and quantitative predictions, laying the foundation of modern physics.

In the early 18th century, Euler, N. Bernoulli and d’Alembert, analyzed equations involving
differentiation with respect to several variables, motivated by fundamental physical problems
such as vibrating strings and fluid motion.

3

mailto:ga482@cam.ac.uk


1.1 Overview of the course 1 Introduction

The 19th century introduced rigorous analysis (e.g. with the works of Cauchy, Fourier and
G. Green) and 20th century saw the development of the frameworks of functional analysis and
distributions (e.g. with the works of Hilbert, Sobolev, Schwartz), which enabled the modern
study of well-posedness and regularity of solutions.1

Motivations for PDEs Many mathematical fields are fully connected with the study of
PDEs through the study of physical laws, as Fourier analysis (born to study the conduction of
heat), complex analysis (which depends on the Cauchy-Riemann equations), and functional
analysis (serving as setting for the modern approach to PDE, but also important in quantum
physics) and differential geometry (e.g. studying the Ricci flow as PDE has been fundamental
to solve the Poincaré conjecture).

The fundamental laws of physics typically express relations among quantities depending on
multiple independent variables and their partial derivatives. This naturally gives rise to PDEs
such as the Laplace, Euler, Navier–Stokes, Maxwell, Boltzmann, Einstein and Schrödinger.

The analysis of PDEs thus forms a vast and central discipline, standing at the crossroads of
physics and numerous branches of pure and applied mathematics.

Modern approach vs classical approach In this introductory course, we will focus on the
modern approach to PDE theory. This contrasts with the classical approach, which seeks explicit
solution formulas using methods such as Fourier series, integral transforms, and separation of
variables (as you may have encountered in undergraduate courses). While effective in specific
cases, these methods are not sufficient to understand PDEs within a broader framework.

The modern approach instead studies existence, uniqueness, and qualitative properties
of solutions by embedding the problem into a “suitable” function space equipped with the
right topology. Choosing this “suitable” space (and associated topology) is a crucial part of
the problem: it must be large enough to contain some solutions, yet restrictive enough to
guarantee uniqueness. Moreover, this approach has the additional advantage of extending the
notion of solution to functions less regular than classical differentiability would require.

Content of the course After a first introduction to PDEs starting from your knowledge
of ODEs, we will first present the only general result available for PDEs (in a very special
class of solutions), then, after introducing the necessary functional tools, we will focus on
linear elliptic and evolutionary problems through energy estimates. We will focus on Laplace
equation, wave equation and Burgers equation. In the example classes, we will touch also
linear parabolic problems and few nonlinear scenarios.

• Chapter 1: Introduction (2 lectures) Starting from your knowledge of ordinary differen-
tial equations (ODEs) we will introduce the concept of PDEs. We also present some
fundamental examples.

• Chapter 2: The Cauchy-Kovalevskaya theory (4 lectures) We present basically the only
general existence theorem for PDEs. This is about solving locally PDEs with analytic
coefficient within the analytic class of solutions. It was first proved by Cauchy for a
special class of PDEs, and later generalized by Kovalevskaya to its modern form. In her
work, she also clarified the geometric condition required for the theorem to hold.

• Chapter 3: Functional toolbox (5 lectures) This chapter prepares for the following two.
It reviews key definitions and properties of Hölder and Lebesgue spaces, introduces

1For more historical information on the period before Euler see Cajori, Amer. Math. Monthly 35 (1928),
instead on the period after Euler, see Brezis-Browder, Adv. Math. 135 (1998).
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1.2 From ODEs to PDEs 1 Introduction

weak (generalised) derivatives, and studies them in three settings: (1) approximation
by convolution, (2) extension and trace theorems, and (3) Sobolev spaces and their
inequalities.

• Chapter 4: Elliptic PDEs (6 lectures) We study variants of the Laplace equation with
prescribed boundary conditions. We introduce the Lax-Milgram theorem to construct
solution and its extensions through the Fredholm theory. We also discuss the elliptic
regularity estimates.

• Chapter 5: Hyperbolic PDEs (7 lectures) We study two fundamental hyperbolic equations,
the transport equation (first order) and the wave equation (second order). We also discuss
the method of characteristic and formation of singularity for Burgers equation. We also
present the method of energy estimate for the wave equation and its consequences.

1.2 From ODEs to PDEs
Consider a function

F (x, y1, . . . , yk+1),

depending on k + 2 real variables. An ordinary differential equation (ODE) is an equation of
the form

F
(
x, u(x), u′(x), . . . , u(k)(x)

)
= 0, x ∈ U ⊂ R,

for some k-times differentiable u : U → R (classical solution), where U is an interval here.

Example 1.1. if F (x, y, z) = f(x, y)− z, we recover

y′(x) = f(x, y(x)),

whose solutions (x, y(x)) are trajectories (integral curves).

Partial differential equations (PDEs) arise when the unknown depends on several real
variables.

u = u(x) = u(x1, . . . , xn), n ≥ 2,

The equation then involves the partial derivatives

∂u

∂xi
,

∂2u

∂xi∂xj
,

∂3u

∂xi∂xj∂xℓ
, . . .

In this case we work with a domain (open, not empty connected set) U ⊂ Rn.

Definition 1.2 (Order-k PDE). Let n ≥ 2 and U ⊂ Rn be a domain. A partial differential
equation of order/rank k is a relation

F
(
x, u(x),∇u(x), . . . ,∇ku(x)

)
= 0, x ∈ U , (1.1)

where F : U × R× Rn × Rn2 × · · · × Rnk → R and the unknown is u : U → R. A classical
solution is a function u ∈ Ck(U) for which (1.1) holds pointwise on U after substituting
u,∇u, . . . ,∇ku.

Remark 1.3. 1. (Notation) ∇u = (∂xi
u)i, ∇2u = (∂xixj

u)ij , and in general ∇ku collects all
order-k partial derivatives.
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1.2 From ODEs to PDEs 1 Introduction

2. (Evolution form) If one coordinate can be singled out as time, say t = x1, the PDE
may be written as an evolution equation (e.g. ∂tu = G(t, x′, u,∇x′u, . . . , Dk

x′u) where
x′ = (x2, . . . , xn)). Finding a variable that plays the role of time can be a difficult task,
as for the Einstein equation in general relativity.

3. (Data) For ODEs, a solution depends by an initial value, u(t0) = u0. For PDEs the picture
is richer. If the equation is already in evolution form, this often reduces to prescribing
the initial profile u(t0, ·) over the n− 1 remaining variables (and, when needed, time-
derivative data), while boundaries may occur in other variables (e.g. on a time–space
cylinder) and require boundary conditions there. In full generality, the data must be
given on a noncharacteristic hypersurface, a geometric non-degeneracy (detailed in the
next chapter).

4. (Systems) More generally, u : U → Rm and F may be RN -valued, yielding a system of
PDEs.

5. (Infinite-dimensional dynamical system viewpoint) It is natural to ask whether a PDE
can be seen as an infinite-dimensional version of an ODE. In the simplest case, whenever
a PDE can be written in evolution form, e.g.

∂tu = G(x′, u,Dx′u, . . . , D
(k)
x′ u),

we may regard u(t) as a curve in a function space X (equipped with a suitable topology),
and G : X → X as an operator, possibly nonlinear. However, even in this case, it is too
naive to think of PDEs as just an infinite dimensional version of ODEs. PDEs bring in
additional difficulties and features.

(a) Geometry via the principal symbol: The loss of total order (when passing from
R to higher dimension) gives new geometric phenomena (elliptic/parabolic/hyperbolic
types) which imply relevant physical features (such as time reversibility or irreversibility,
finite or infinite speed of propagation).

(b) Functional setting. In infinite dimensions, norms are no longer equivalent. Even
linear operators such as derivatives act as unbounded operators, so the choice of function
spaces and topologies for their domains and ranges becomes a crucial part of the analysis.

(c) Nonlinearity: interactions between derivatives creates much more variety than
just sign and modulus of the nonlinearity (as in the ODEs case).2

6. (Unifying principles in PDE) There is no single, systematic theory as for ODEs be-
yond a few foundational results. One must exploit the equation’s structure (ellip-
tic/parabolic/hyperbolic) and its properties like scaling, invariances, type of data and
geometry, hence focusing on fundamental equations and faithful toy problems, rather
than randomly invented ones. The field is unified by goals and methods, not by an
universal theory.

2At linear level the spectral theory can be seen as a generalization of the finite dimensional case, but at a very
limited extent (indeed, for example, the spectrum of an operator in infinite dimension can be continuous and
eigenfunctions may fail to exist).
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1.3 The Cauchy problem 1 Introduction

LECTURE 2
1.3 The Cauchy problem
1.3.1 What can we learn from ODEs?

A basic question in mathematical analysis how t “invert” differentiation. Given a continuous
function F : R → R, one seeks a differentiable function u : R → R such that

u′(t) = F (t), t ∈ I,

on some open interval I ⊂ R. This is the simplest type of differential equation, and the
fundamental theorem of calculus gives the explicit solution

u(t) =

∫ t

t0

F (y) dy + u(t0), t0 ∈ R.

This is a one-parameter family, determined by the boundary condition u(t0) = u0 (which,
in this case we usually call initial condition). The argument directly yields existence and
uniqueness of a differentiable solution u satisfying u(t0) = u0.

The same reasoning applies even if F is only (Riemann or Lebesgue) integrable. In both
integration theories, the integral is obtained as a limit process (in the Riemann sense as the
limit of Riemann sums and in the Lebesgue sense as the limit of integrals of simple functions),
so the construction of u is intrinsically based on a limiting process.

The actual theory of ODEs begins when the right-hand side depends locally on the unknown
function, i.e.

u′(t) = F (t, u(t)),

with F defined, for instance, on R× R. We are interested in the existence, uniqueness, and
continuation of solutions, depending on the regularity of F . The following are three classical
theorems in ODEs, presented in decreasing order of regularity on F .3

Theorem 1.4 (Cauchy-Kovalevskaya theorem for ODEs4). Assume that the vector field F (t, u)
is real analytic5 in a neighbourhood of (t0, u0). Then there exists a unique local real analytic
solution u of

u′(t) = F (t, u(t)), u(t0) = u0,

defined in a neighbourhood of t0.

This theorem represents the first attempt to solve nonlinear ODEs “semi-explicitly” (explicit
up to summing an infinite convergent series) by infinite Taylor expansions.6 Although theoret-
ically important, it is not practical (in particular u is constructed by power series involving all
derivatives of F ) and requires very strong assumptions on F . The same analytic approach will
reappear for certain PDEs in the next chapter.

3Another more important and more recent result, the DiPerna-Lions theorem (1989), gives existence and
uniqueness of solutions in an appropriate almost everywhere sense to ODE when, for instance, F = F (u) ∈W 1,1

and ∇ · F = 0
4First proved by Cauchy (1842) for ODEs and first-order quasilinear PDEs, and extended to its modern form

by Kovalevskaya (1875).
5A real function is analytic at a point if it has derivatives of all orders and coincides with its Taylor series in a

neighbourhood of that point.
6Historically, after finding examples of ODEs (e.g. some Riccati equations, Airy equations) whose solutions

could not be express in terms of elementary functions and their integrals, practice shifted from closed forms to
special function and series solutions.
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1.3 The Cauchy problem 1 Introduction

Theorem 1.5 (Cauchy–Lipschitz / Picard–Lindelöf theorem7). Assume that the vector field
F = F (t, u) is continuous in both variables and Lipschitz continuous in u. Then for every
(t0, u0) there exists a neighbourhood of t0 where the ODE admits a unique C1 solution u satisfying
u(t0) = u0. Moreover, the solution depends continuously on the initial data u0.

This result, proved by a contraction mapping argument, is the most useful in applications
(indeed, it constructs u by better and better approximations depending only onF ). It guarantees
existence and uniqueness of solutions, together with their continuous dependence on the initial
data. For PDEs, these three requirements form the notion of well-posedness.

Theorem 1.6 (Cauchy–Peano theorem8). If the vector field F (t, u) is merely continuous, then
for every (t0, u0) there exists a neighbourhood of t0 where the ODE admits at least one C1 solution
satisfying u(t0) = u0. The solution need not be unique.

The proof proceeds by approximating the trajectory with polygonal lines (Euler method)
and applying compactness theorems such as Arzelà-Ascoli. Conceptually is the finite di-
mensional (and for continuous functions) paradigm that underlies modern weak solution
constructions in PDE.

Example 1.7 (Non-uniqueness). A typical example is

u′(t) =
√
u(t), u(0) = 0,

which admits two types of solutions (Exercise 1.2(a)). Another example given by Peano is

u′(t) =
4u(t)t3

u(t)2 + t4
, u(0) = 0,

which admits five distinct solution types (Exercise 1.3(b)).

These theorems illustrate the delicate role of regularity the vector field F : higher regularity
facilitates uniqueness.

Local vs global solutions The previous theorems establish only local results. It is natural
to ask how far a solution can be extended in time. If it is defined for all t ≥ t0, it is called a
global solution.

Example 1.8. (A blow-up example) Even when F is continuous and locally Lipschitz in u,
the solution can blow up in finite time. A classical example is (Exercise 1.2(c))

u′(t) = u(t)2, u(0) = u0 > 0.

By contrast, changing the sign of the nonlinearity, u′(t) = −u(t)2 admits a global solution.
Thus not only the modulus of the nonlinearity, but also its sign matters.

Criterion 1.9. A standard sufficient condition for ensuring global existence is the uniform
Lipschitz bound in u: there exists L ≥ 0 such that

|F (t, u)− F (t, v)| ≤ L |u− v| for all t and u, v.

This prevents blow-up and yields global solutions. Such a criterion rarely extends to PDEs,
even linear ones, because their associated operators are typically unbounded.

7Appeared first in Cauchy’s lectures at the École Polytechnique (1830s) for C1 vector fields, later generalized
by Lipschitz, and finally given its modern proof via fixed points by Picard and Lindelöf.

8Published in 1890 by Peano as an extension of Cauchy’s theorem.
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1.3 The Cauchy problem 1 Introduction

Criterion 1.10. When F is continuous and locally Lipschitz in u with the linear growth
estimate

|F (t, u)| ≤ C (1 + |u|) for some C > 0 and all (t, u), (1.2)

then the solution is global (prove it). This already shows that a linear growth bound strongly
influences uniqueness.

Example 1.11. For any initial data u(0) = u0 ∈ R, both

u′(t) = sin(u(t)), u′(t) = sin
(
u(t)2

)
,

admit global solutions (use the above criteria).

1.3.2 Well-Posedness in the sense of Hadamard

Early work on ODEs emphasized explicit integration (quadratures and special functions), but
no general “finite formula" exists for solution to an arbitrary equations. The next step was
looking for “countable formula" with infinite series, which is what Cauchy did in the first
theorem above. However, this is limited to the local and analytic setting. The conceptual
breakthrough still by Cauchy (the second theorem above) consist of constructing solutions
through approximation and limiting processes (using the completeness of the real line) and
then check uniqueness, given suitable boundary conditions, by a contraction estimate. Peano
then extended this framework using compactness to construct solutions under lower regularity
for F (third theorem). In the absence of explicit solutions and given that “solving” now has
a more abstract meaning, what is the connection between the equation considered and the
underlying physics? In his 1902 paper, Hadamard proposes the concept of well-posedness to
answer this question.

Definition 1.12 (Cauchy problem & Hadamard well-posedness). A Cauchy problem consists
of a PDE (1.1) on a domain U together with boundary conditions, i.e. prescribed values of the
unknown and possibly some of its derivatives on part of U . It is well-posed in a function space
X (in the sense of Hadamard) (e.g. Ck(U), Hk(U),. . . ) if:

(i) There exists u ∈ X solving (1.1) with the given boundary data;
(ii) The solution is unique in X , given the boundary data;

(iii) The solution depends continuously on the boundary data (in a suitable topology).

Remark 1.13. 1. (Meaning of well-posedness) Existence prevents over-determination; unique-
ness prevents under-determination. For evolution problems, (i)–(ii) encode causality:
the present data determine uniquely the future. (iii) means that causality has to behave
continuously to be practical: we need that small data errors produce only small changes
in the solution. The concept of well-posedness can be considered as a minimal require-
ment for physical consistency, and it is also useful from a modeling point of view to
identify correct equations and boundary conditions.

2. (The choice of X) The function space X (together with a suitable topology) should be
both large enough to find at least a solution and small enough (e.g. more regularity,
more decay at infinity) to have uniqueness. This is a crucial part of the problem: finding
the correct balance between these two requirements. When the function space is so
large that the derivatives of the unknown appearing in the PDE are not guaranteed to
exist in classical sense, we talk about weak solutions. The correct space is sometimes
suggested by key physical quantities (e.g. energy, entropy).
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1.3 The Cauchy problem 1 Introduction

3. (What we can export to PDEs) The Cauchy-Kovalevskaya theorem has some extension
to PDEs (see next chapter). Usually PDEs, even linear ones, lead to unbounded operators,
so searching for an analogue to PDEs of Picard-Lindelöf theorem seems to naive.9 The
proof (through Gronwall lemma) of the growth condition criterion (1.2) for extending
solutions globally corresponds to the idea of a priori (or energy) estimates in PDEs.

9However, the Hille-Yosida theory can be seen (at some extent) as a generalization for (some) linear unbounded
operators in PDEs.
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1.4 Linear and classes of nonlinear PDEs 1 Introduction

LECTURE 3

1.4 Linear and classes of nonlinear PDEs
Definition 1.14. We say that the PDE is linear when the vector field F is a linear function of
u and its derivatives; Then (1.1) reduces to10∑

α:|α|≤k

aα(x)∂
αu(x) = f(x)

for some coefficients aα and source term f . When f ≡ 0 the PDE is said to be homogeneous.
We say that the PDE is semilinear when the vector field F is linear in the highest order
derivatives; the PDE takes the form∑

α:|α|=k

aα(x)∂
αu(x) + a0

[
x, u,∇u, . . . ,∇k−1u

]
= f

where the coefficient a0 can be nonlinear in all variables. We say that the PDE is quasilinear
when the vector field F is linear in the highest order derivatives but with possible nonlinear
dependency in the lower-order derivatives; the PDE takes the form∑

α:|α|=k

aα
[
x, u,∇u, . . . ,∇k−1u

]
∂αu(x) + a0

[
x, u,∇u, . . . ,∇k−1u

]
= f.

We say that the PDE is fully nonlinear if it is not one of the above forms. When the PDE
takes the form of an evolution problem and the vector field F does not depend on time t, the
PDE is said to be autonomous, and a solution u which does not depend on time is said to be
stationary.

Example 1.15. The following PDEs demonstrate each of the above forms: ∆u = 0 is linear,
∆u =

(
∂u
∂x1

)2 is semilinear, u∂2u
∂x2 + ∂2u

∂y2
= ∂u

∂x
on u = u(x, y) is quasilinear, and ∂2u

∂x2
∂2u
∂y2

−(
∂2u
∂x∂y

)2
= 0 on u = u(x, y) is fully nonlinear.

Some concrete examples of PDEs in physics are: the compressible and incompressible
Euler equations, the compressible and incompressible Navier–Stokes equations (e.g. in the
simplest incompressible form ∂tu+ (u·∇)u− ν∆u+∇p = 0 with ∇· u = 0; the question of
global regularity vs finite-time blow-up from smooth initial data in three space dimensions
is a Millennium Prize Problem), the Maxwell equations in electromagnetism, the (Maxwell)-
Boltzmann equation in kinetic theory, the (Jeans)-Vlasov equations in plasma physics and
galactic dynamics, the Schrödinger equation in quantum mechanics, the Einstein equations in
general relativity.

Two concrete examples of PDEs arising from within mathematics are the Cauchy–Riemann
equations ∂xu− ∂yv = 0 and ∂yu+ ∂xv = 0 in complex analysis (which imply ∆u = ∆v = 0)
and the Ricci flow ∂tgij = −2Rij (where gij is the metric tensor and Rij is the Ricci tensor) in
differential geometry.

10We write ∂α = ∂α1

∂x
α1
1

· · · ∂αn

∂xαn
n

.
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2 The Cauchy-Kovalevskaya Theorem

2 The Cauchy-Kovalevskaya Theorem
This section deals with the only “general” theorem for PDEs that can be carried over from
ODEs, the Cauchy–Kovalevskaya Theorem. Its rigorous formulation introduces the notions
of non-characteristic data, principal symbol, and the basic classification of PDEs. However,
analyticity is often not a satisfying functional setting for PDEs.

2.1 Real Analyticity
Definition 2.1. Given U ⊂ Rn open non-empty, a function f : U → R is real analytic near
x̃ ∈ U if there is r > 0 and real constants (fα)α∈Nn so that the series∑

α∈Nn

fα(x− x̃)α (2.1)

(where we denote xα := xα1
1 x

α2
2 · · · xαn

n ) is converging, respectively absolutely converging11

when n ≥ 2, and converges to f(x) for x ∈ B(x̃, r). A function f : U → R is real analytic
on U if it is real analytic near any x̃ ∈ U . A vector valued function f : U → Rm (m ≥ 2) is
real analytic if each of its component is real analytic. The set of all real analytic functions on a
given open set U is denoted by Cω(U).
Remark 2.2. Simple examples of analytic functions are polynomials, the exponential, cosinus
and sinus. The complex conjugate z 7→ z̄ is not complex analytic but is real analytic on R2.
The function e−1/x2 extended by 0 at x = 0 is smooth but not real analytic near x = 0 (its
Taylor series is zero). More generally non-zero smooth compactly supported functions are not
real analytic. The Liouville theorem (in complex analysis) is false for real analytic functions
(e.g. f(x) = 1/(1 + x2) on R is bounded and non-constant). Note finally that real analyticity
is a local property: f is real analytic near x̃ implies that f is real analytic on a neighbourhood
of x̃ (see Exercise 1.8(v)).

Proposition 2.3. Given U ⊂ Rn open, a function f : U → R is real analytic on U if and only if
f ∈ C∞(U) and for any compact K ⊂ U there are constants C(K), r(K) > 0 so that

∀x ∈ K, ∀α ∈ Nn, |∂αf(x)| ≤ C(K)
α!

r(K)|α|
,

where α! := α1!α2! · · ·αn! and |α| = α1 + α2 + · · ·+ αn.

Remark 2.4. Another equivalent definition is the following: for every a ∈ U ⊂ Rn, there
exists an open neighborhood V ⊂ Cn of a and a holomorphic function F : V → C such that
F
∣∣
V∩Rn = f (prove it in case U ⊂ R). When U = Rn, real analyticity can be characterized by

the exponential decay of the Fourier transform (we will not use this characterization).

11Alternatively, in the definition we can just ask for conditional convergence but we need to clarify the way
we sum on multiindices:

∑
k=0

∑
α:|α=k|

∑
α∈Nn fα(x− x̃)α.

12



2.1 Real Analyticity 2 The Cauchy-Kovalevskaya Theorem

LECTURE 4
Proof of Proposition 2.3. Preliminaries. Let r > 0 be such that the power series (2.1) converges
absolutely on B(x̃, r).12 Then for any r̃ ∈ (0, r/

√
n), setting

C(r̃) :=
∑
α∈Nn

|fα| r̃|α| <∞,

which is finite by evaluating the series at x̃+hwhereh = (r̃, . . . , r̃) (so that |h−x̃| = √
n r̃ < r),

we have
|fα| ≤ C(r̃) r̃−|α| ∀α ∈ Nn. (2.2)

Consequently, for any 0 < r̂ < r̃ the series is absolutely and uniformly convergent on B(x̃, r̂)
since ∑

α

|fα| |x− x̃||α| ≤ C(r̃)
∑
α

(
|x−x̃|

r̃

)|α|
<∞.

Proof of =⇒. Assume f is real analytic near x̃, i.e. (2.1) holds and the series is convergent
(absolutely convergent for |x− x̃| < r when n ≥ 2). Fix numbers

0 < r̄ < r̂ < r̃ < r/
√
n ≤ r,

so that (2.2) holds with r̃, and the uniform convergence discussion applies on B(x̃, r̂).
Then the series and all its termwise derivatives converge uniformly on B(x̃, r̂), hence

f ∈ C∞(B(x̃, r̂)) and
∂αf(x̃) = α! fα.

Now take x ∈ B(x̃, r̄) and any β ∈ Nn. Then

|∂βf(x)| ≤
∑
α≥β

|fα|
α!

(α− β)!
|x− x̃||α−β|

≤ C(r̃)
∑
α≥β

r̃−|α| α!

(α− β)!
r̄|α−β|

= C(r̃) r̃−|β|
∑
α≥β

α!

(α− β)!

(
r̄
r̃

)|α−β|
.

Using the multiindex identity (see Exercise 1.7)∑
α≥β

α!

(α− β)!
λ|α−β| = β! (1− λ)−(|β|+n) (0 < λ < 1),

with λ = r̄/r̃, we get

|∂βf(x)| ≤ C(r̃) r̃−|β| β! (1− r̄/r̃)−(|β|+n) =
C(r̃)

(1− r̄/r̃)n
β! (r̃ − r̄)−|β|.

Thus on each closed ball B(x̃, r̄) we have the desired bound. Covering any compact K ⊂ U
by finitely many such closed balls yields the global constants C(K), r(K) ∈ (0,∞), obtaining∣∣∂βf(x)∣∣ ≤ C(K)β!r(K)−|β| for all x ∈ K .

12In general, we define the radius of convergence r ∈ [0,∞] as the supremum of the radii where the series is
absolutely converging.
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2.1 Real Analyticity 2 The Cauchy-Kovalevskaya Theorem

Proof of ⇐=. Fix x̃ ∈ U and let K := B(x̃, ρ) ⊂ U . By assumption, there exist C̃, r̃ > 0 such
that

|∂αf(x)| ≤ C̃
α!

r̃|α|
for all x ∈ K, α ∈ Nn.

Set ρ∗ := min{ρ, r̃/2}. For any x with |x − x̃| < ρ∗, the segment x̃ + t(x − x̃), t ∈ [0, 1], is
contained in K , so we may apply Taylor’s formula with integral remainder:

f(x) =
∑
|α|≤k

∂αf(x̃)
(x− x̃)α

α!
+

∑
|α|=k+1

Rα(x) (x− x̃)α,

where
Rα(x) :=

|α|
α!

∫ 1

0

(1− t)|α|−1∂αf(x̃+ t(x− x̃)) dt.

Thanks to the controls on the ∂αf ’s we have
∑

α∈Nn

∣∣∣∂αf(x̃)
α!

(x− x̃)α
∣∣∣ <∞ (prove it) so Taylor

series is absolutely converging on B(x̃, ρ∗). Using the bound on ∂αf we obtain

|Rα(x)| ≤ C̃ r̃−|α|.

Hence ∣∣∣ ∑
|α|=k+1

Rα(x) (x− x̃)α
∣∣∣ ≤ C̃ r̃−(k+1)

∑
|α|=k+1

|(x− x̃)α|.

Since
∑

|α|=m |yα| ≤ Cn |y|m for some constant Cn > 0 , we obtain (prove it)∣∣∣ ∑
|α|=k+1

Rα(x) (x− x̃)α
∣∣∣ ≤ C ′′(k + n)n−1 r̃−(k+1)|x− x̃|k+1.

Since |x− x̃| ≤ ρ∗ we get∣∣∣ ∑
|α|=k+1

Rα(x) (x− x̃)α
∣∣∣ ≤ C ′′(k + n)n−1

( |x− x̃|
r̃

)k+1

≤ C ′′(k + n)n−1 2−(k+1) k→∞−−−→ 0.

Therefore the remainder tends to zero, and the Taylor series converges absolutely to f(x) on
B(x̃, ρ∗). Since x̃ was arbitrary, f is real analytic on U .

The main idea in part (⇒) of the proof above consists of a comparison between intricate
combinatorial sums and the derivatives of the geometric series. This comparison is the core of
Cauchy’s argument in the Cauchy–Kovalevskaya theorem (for ODEs and later for PDEs). It
motivates the following definition.

Definition 2.5. Let f =
∑

α≥0 fαx
α and g =

∑
α≥0 gαx

α be two formal power series. We say
that g majorizes f , or g is a majorant of f , written g ≫ f , if gα ≥ |fα| for all α ≥ 0. If f
and g are valued in Rm, then we say that g majorizes f if gj ≫ fj for all j = 1, . . . ,m.

Remark 2.6. Note that g ≫ f implies gα ≥ 0 for all α ∈ Nn.

Proposition 2.7. Let f and g be formal power series.
(i) If g ≫ f and g converges for |x| < r, then f converges absolutely for |x| < r as well.

(ii) If f converges absolutely for |x| < r and r̃ ∈ (0, r/n), then there exists a majorant f̄ ≫ f
which converges on |x| < r̃.

14



2.1 Real Analyticity 2 The Cauchy-Kovalevskaya Theorem

Proof. (i) Fix x ∈ B(0, r) and set y := (|x1|, . . . , |xn|). Then |y| = |x| < r, and for the
truncated sums

Sk =
∑
|α|≤k

∣∣fαxα∣∣ = ∑
|α|≤k

|fα| yα ≤
∑
|α|≤k

gα y
α ≤

∑
α≥0

gα y
α = g(y),

where we used that the gα’s are non-negative. Since g(y) <∞ then Sk is uniformly bounded
(and monotone) in k. Therefore Sk converges, i.e. f converges absolutely at x.
(ii) Fix r̃ ∈ (0, r/n) and choose r̂ with

√
n r̃ < r̂ <

r√
n
.

Let y = (r̂, . . . , r̂); then |y| = r̂
√
n < r, so by absolute convergence

S :=
∑
α≥0

|fα| r̂|α| < ∞, hence |fα| ≤ S r̂−|α| for all α.

We construct two examples of majorants.
Majorant 1. Define

f̄(x) := S
n∏

i=1

1

1− xi/r̂
= S

∑
α≥0

r̂−|α|xα.

Then f̄α = S r̂−|α| ≥ |fα|, so f̄ ≫ f . Moreover, the product converges whenever |xi| < r̂ for
all i. Since |x| < r̃ implies |xi| ≤ |x| < r̃ < r̂, it also converges on the ball B(0, r̃).
Majorant 2.13 We define

f̃(x) :=
Sr̂

r̂ − (x1 + · · ·+ xn)
= S

∑
k≥0

(
x1 + · · ·+ xn

r̂

)k

= S
∑
α≥0

|α|!
α! r̂|α|

xα,

where the last is a multiindex identity (see Exercise 1.7). Its coefficients satisfy

f̃α = S
|α|!
α! r̂|α|

≥ S r̂−|α| ≥ |fα|,

so f̃ ≫ f . For convergence

∑
α≥0

∣∣f̃αxα∣∣ = S
∑
k≥0

1

r̂k

∑
|α|=k

k!

α!
|x|α = S

∑
k≥0

( |x1|+ · · ·+ |xn|
r̂

)k

.

If |x| < r̃, then
∑n

i=1 |xi| ≤
√
n |x| < √

n r̃ < r̂, so the last geometric series converges. Hence
f̃ converges on |x| < r̃.14

13The two majorants coincide in the scalar case n = 1.
14Majorant 1 requires only r̃ ∈ (0, r/

√
n), while majorant 2 requires r̃ ∈ (0, r/n).
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2.2 The Cauchy-Kovalevskaya theorem for ODEs 2 The Cauchy-Kovalevskaya Theorem

LECTURE 5

2.2 The Cauchy-Kovalevskaya theorem for ODEs
Theorem 2.8 (Cauchy-Kovalevskaya theorem for (scalar autonomous) ODEs). Let a, b > 0,
u0 ∈ R, and F : (u0 − b, u0 + b) → R be real analytic. If u : (−a, a) → (u0 − b, u0 + b) is a C1

solution of
u′(t) = F (u(t)), u(0) = u0,

then u is real analytic on (−a, a).
Remark 2.9. As stated, the construction of solutions is already settled by the Picard-Lindelöf
theorem so this is a regularity theorem: the solution is real analytic in the region where the
field F is analytic. Instead in the analogue theorem for PDEs, the construction of the solution
is part of the theorem. To prove the theorem, we can assume u0 = 0. It is also sufficient to
prove analyticity near t = 0, as then one can apply the same argument starting with any
t0 ∈ (−a, a).

We give four different proofs to show several ideas. Only the proof by majorants will
extend to the PDE case.

Proof by Picard iterations in C (Not examinable). Since F is real analytic at u0, there exists
ρ > 0 and a holomorphic extension (still called F ) to the complex disc Dρ(u0). Choose
0 < ρ1 < ρ so that Dρ1(u0) ⊂ Dρ(u0) and set M := sup|w−u0|≤ρ1 |F (w)| < ∞, L :=
sup|w−u0|≤ρ1 |F ′(w)| <∞. Pick R > 0 with MR ≤ ρ1/2 and q := LR < 1, and consider the
closed disk DR.
Define u0(z) ≡ u0 and, for n ≥ 0,

un+1(z) := u0 +

∫ z

0

F (un(z
′)) dz′ = u0 +

∫ 1

0

F
(
un(tz)

)
z dt, |z| ≤ R.

By induction, each un is holomorphic on DR, un(0) = u0, and |un+1(z)− u0| ≤MR ≤ ρ1
2
, so

un(DR) ⊂ Dρ1(u0).
For |z| ≤ R,

|un+1(z)−un(z)| ≤
∫ 1

0

|F (un(tz))−F (un−1(tz))| |z| dt ≤ LR ∥un−un−1∥∞ = q ∥un−un−1∥∞.

Hence ∥um − uℓ∥∞ → 0 for m ≥ ℓ and ℓ → ∞. Thus (un)n is Cauchy in the Banach space
(C(DR), ∥ · ∥∞) (the space of continuous functions on DR) and by completeness there exist
u ∈ C(DR) with un → u uniformly on DR.
The limit is holomorphic. Indeed, for any closed piecewise C1 curve γ ⊂ DR, Cauchy’s integral
theorem gives

∫
γ
un dz = 0 for all n, and by the uniform limit also

∫
γ
u dz = 0; by Morera’s

theorem, u is holomorphic on DR. Passing to the limit in the defining integrals gives

u(z) = u0 +

∫ z

0

F
(
u(z′)

)
dz′, z ∈ DR,

so for z real in DR we have u′(z) = F (u(z)) and u(0) = u0, thus by uniqueness it coincides
with the given C1 solution, which then it is analytic (as it extends as a holomorphic function).
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Proof by separation of variables in ODE theory (not examinable). In case F (0) = 0 then the
solution is u ≡ 0 that is real analytic (and by uniqueness coincides with the given C1 solution).
Letting F (0) ̸= 0 we choose b′ ∈ (0, b) such that F ̸= 0 on (−b′, b′). Then 1/F is analytic
there and we define

G(y) :=

∫ y

0

1

F (x)
dx, y ∈ (−b′, b′),

so G is analytic and G′(0) = 1/F (0) ̸= 0. For some a′ ∈ (0, a), u((−a′, a′)) ⊂ (−b′, b′) and
by the chain rule

d

dt
G(u(t)) =

1

F (u(t))
u′(t) = 1,

hence G(u(t)) = t for |t| < a′ (using G(0) = 0). By the analytic inverse function theorem, G−1

is analytic near 0, so u(t) = G−1(t) is analytic near 0.

Remark 2.10. This proof secretly relies on either complex extension or the method of majorants.
Indeed, the proofs of the analytic inverse function theorem proceed by locally complexify-
ing real-analytic maps and applying the holomorphic implicit function theorem (proved via
Cauchy’s integral formula), or otherwise by series reversion (via recurrence relation of co-
effiecients or Lagrange inversion theorem), with convergence ensured by Cauchy majorants.15

Proof by embedding the ODE in a one-parameter family of ODEs (not examinable). FixR ∈ (0, b).
Since F is real-analytic, there exists ρ > 0 and a holomorphic extension (still denoted by
F ) to the tube Ω := {w = x + iy ∈ C : |x| ≤ R, |y| < ρ }. Set M := supw∈Ω |F (w)| and
L := supw∈Ω |F ′(w)|.
For z ∈ C consider

u′z(t) = z F (uz(t)), uz(0) = 0, for |z| ≤ 2. (2.3)

On Ω, |zF (w)| ≤ 2M and the Lipschitz constant of w 7→ zF (w) is bounded by 2L. Choose

τ ≤ min
{ R

2M
,

ρ

2M
,

1

2L

}
. (2.4)

By Picard–Lindelöf there is a unique uz ∈ C1([−τ, τ ]) with uz(t) ∈ Ω for |t| ≤ τ , with τ
independent of z (check how the interval of existence is estimated in the proof of Picard-
Linderöf).
Let u := u1. For real z ∈ (−2, 2), the map t 7→ u(zt) solves (2.3); by uniqueness,

uz(t) = u(zt) for |t| ≤ τ, z ∈ (−2, 2) ∩ R. (2.5)

We show that uz(t) is holomorphic in z. Since the map z 7→ uz(t) is C1 in the real sense, that is
in the variables ℜ(z),ℑ(z) (check it), then to show that is holomorphic it is enough to check
that ∂z̄uz ≡ 0 (this is equivalent to the Cauchy-Riemann equations), where ∂z̄ := 1

2
(∂x + i∂y).

Differentiate (2.3) in z̄. Using ∂z̄z = 0 and the holomorphic chain rule on Ω,

∂t(∂z̄uz) = z F ′(uz) ∂z̄uz, ∂z̄uz(0) = 0,

15Historically, Cauchy is credited with the first proofs of the implicit function theorem, one employing
holomorphic functions and another based on his method of majorants, see Krantz–Parks, The Implicit Function
Theorem (2002).
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hence ∂z̄uz ≡ 0. Therefore, for fixed t, z 7→ uz(t) is holomorphic on |z| < 2.
Thus, for fixed t we have

uz(t) =
∞∑
ℓ=0

1

ℓ!
∂ℓzuz(t)

∣∣
z=0

zℓ, |z| < 2.

At z = 1,

u(t) = u1(t) =
∞∑
ℓ=0

1

ℓ!
∂ℓzuz(t)

∣∣
z=0

.

By (2.5), for real z near 0, uz(t) = u(zt), hence

∂ℓzuz(t)
∣∣
z=0

=
dℓ

dzℓ
u(zt)

∣∣∣
z=0

= tℓ u(ℓ)(0).

Therefore,

u(t) =
∞∑
ℓ=0

tℓ

ℓ!
u(ℓ)(0) for |t| < τ,

and u is real analytic near 0.

Proof by the method of majorants. Let u be the given C1 solution of u′ = F (u(t)), with F
analytic. Then F (u(t)) is C1, hence u′ is C1 and u is C2. Iterating this, we conclude u ∈ C∞.
We can compute the higher derivatives inductively:

u(1)(t) = F (0)(u(t)),

u(2)(t) = F (1)(u(t))u(1)(t) = F (1)(u(t))F (0)(u(t)),

u(3)(t) = F (2)(u(t))
(
F (0)(u(t))

)2
+
(
F (1)(u(t))

)2
F (0)(u(t)),

. . .

By induction, u(n) is always a polynomial pn in the values F (k)(u), for k = 0, . . . , n − 1,
with non-negative integer coefficients. Moreover, this inductive structure is universal: the
polynomials do not depend on the specific choice of F . In particular

u(n)(0) = pn
(
F (0)(0), F (1)(0), . . . , F (n−1)(0)

)
for n ≥ 1.

Define the formal Taylor series at 0 by

û(t) :=
∑
n≥0

pn(F
(0)(0), . . . , F (n−1)(0))

n!
tn =

∑
n≥0

u(n)(0)

n!
tn, p0 := u(0)(0) := u0 = 0.

Assume there exists an analytic G majorant of F at 0, i.e. such that

G(k)(0) ≥
∣∣F (k)(0)

∣∣ ∀k ≥ 0,

and let v solve
v′(t) = G(v(t)), v(0) = 0,

analytic on |t| < R. The same differentiation scheme gives

v(n)(0) = pn
(
G(0)(0), G(1)(0), . . . , G(n−1)(0)

)
.

18



2.2 The Cauchy-Kovalevskaya theorem for ODEs 2 The Cauchy-Kovalevskaya Theorem

Since the pn have non-negative coefficients∣∣u(n)(0)∣∣ ≤ pn
(
|F (0)(0)|, . . . , |F (n−1)(0)|

)
≤ pn

(
G(0)(0), . . . , G(n−1)(0)

)
= v(n)(0).

Because v is analytic on |t| < R, its Taylor series converges there; this implies the that
Taylor series for û also converges for |t| < R (Proposition 2.7(i)), so û is analytic near 0.
Moreover, û′(t) and F (û(t)) are both analytic (by composition of analytic functions) and all
their derivatives agree at 0, thus it solves the ODE near 0. By local uniqueness u = û near 0,
so u is real analytic near 0.
Since F is real analytic at 0 there exist C, r > 0 with

|F (k)(0)| ≤ C k! r−k ∀k ≥ 0.

Consider the majorant constructed in the proof of Proposition 2.7(ii)

G(x) :=
∑
k≥0

C r−kxk =
Cr

r − x
(|x| < r),

so G(k)(0) = C k! r−k ≥ |F (k)(0)|. The initial value problem

v′(t) = G(v(t)), v(0) = 0

has the explicit solution

v(t) = r − r

√
1− 2Ct

r
,

which is analytic for |t| < R with R = r
2C

. This provides the required G and v, completing
the proof near 0.

Remark 2.11 (Cauchy–Kovalevskaya for ODE systems). As in the proof of Proposition 2.7(ii),
take (for example) the symmetric vector majorant f̄ = G = (G1, . . . , Gm) with G1 = · · · =
Gm = Cr

r−(x1+···+xm)
. With this choice, the scalar majorant proof of Theorem 2.8 can be carried

on to obtain the analogue result for ODE system: if F : B(u0, b) → Rm is real analytic and
u : (−a, a) → B(u0, b) is a C1 solution of u′(t) = F (u(t)) with u(0) = u0, then u is real
analytic (left as an exercise).
Remark 2.12 (Non-autonomous case). The case of non-autonomous F = F (t, u) can be reduce
to an autonomous system: y = (y0, y1, . . . , ym) = (t, u) and ẏ = F̃ (y) := (1, F (y0, y1, . . . , ym)),
y(0) = (0, u0). Thus Cauchy-Kovalevskaya applies in this case as well.
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LECTURE 6

2.3 The Cauchy-Kovalevskaya theorem for PDEs
We consider a k-th order scalar quasilinear PDE16∑

|α|=k

aα
(
x, u,∇u, . . . ,∇k−1u

)
∂αxu+ a0

(
x, u,∇u, . . . ,∇k−1u

)
= 0, x ∈ U ⊂ Rn (2.6)

on the open domain U ⊂ Rn. We want to extend the method of majorant to construct real
analytic solutions.

Note that when k = 1 there is an alternative simpler proof of Cauchy-Kovalevskaya theorem,
making use of the ODE result and based on the so-called method of characteristics17. However,
it fails for systems of first-order PDEs (and thus also for scalar higher-order PDEs), so we need
a more general proof.

2.3.1 Cauchy problem

We must first characterize the set on which conditions complementing the PDE (2.6) will be
imposed.

Definition 2.13. Given U ⊂ Rn open and nonempty, and Σ ⊂ U , we say that Σ is a smooth
(respectively real analytic) hypersurface near x ∈ Σ if there exist ε > 0, an open set
V ⊂ Rn, and a bijection

Φ : B(x, ε) → V
such that Φ and Φ−1 are smooth (respectively real analytic), with Φ(x) = 0, and

Φ
(
Σ ∩B(x, ε)

)
= {yn = 0} ∩ V .

Also, we say that Σ is a smooth (respectively real analytic) hypersurface in U if the
previous property holds near every x ∈ Σ.

Remark 2.14. To connect to your differential geometry course, a hypersurface Σ is an im-
mersed embedded smooth (resp. real analytic) submanifolds with codimension 1 without
boundary. Real analytic submanifolds are defined like smooth submanifolds except that all
local parametrisations are required to be real analytic.

Normal coordinates near a hypersurface. Let Σ ⊂ U ⊂ Rn be a smooth (resp. real analytic)
hypersurface, and let x ∈ Σ. Then there exist18 :

• a smooth (resp. real analytic) unit normal vector N : Σ → Sn−1,
• a smooth (resp. real analytic) map

Ψ : BRn−1(0, ε)× (−ε, ε) −→ Ux,

16We recall that, letting U ⊂ Rℓ be open (ℓ ≥ 2 being the number of variables) and u : U → R, for j ∈ N
the j-th iterated gradient is ∇ju := (∂xi1

· · · ∂xij
u)1≤i1,...,ij≤ℓ, and for a multiindex α = (α1, . . . , αℓ) ∈ Nℓ we

write ∂αx := ∂α1
x1

· · · ∂αℓ
xℓ

.
17We will discuss such method for hyperbolic PDEs in Chapter 5.
18We assume without proof these properties that follow from the definition of hypersurface.
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such that, writing ỹ = (y1, . . . , yn−1) and yn ∈ R,

Ψ(ỹ, yn) = Ψ̃(ỹ) + ynN
(
Ψ̃(ỹ)

)
, Ψ(0, 0) = x, (2.7)

where Ψ̃ : BRn−1(0, ε) → Σ ∩ Ux ⊂ U ⊂ Rn is smooth (resp. real analytic), and Ux ⊂ U is a
neighborhood of x. Differentiating we get

∂ynΨ(y) = N(Ψ̃(ỹ)).

For the tangential directions, fix x′ ∈ Ux ∩ Σ, and choose ỹ′ such that Ψ(ỹ′, 0) = x′. Then the
tangent space to Σ at x′ is

Tx′Σ = Span
(
∂y1Ψ(ỹ′, 0), . . . , ∂yn−1Ψ(ỹ′, 0)

)
.

Now consider the chart Φ := Ψ−1 associated with this parametrisation. Let

φ := Φn : Ux → R

be its last component. By construction Σ ∩ Ux = {φ = 0} ∩ Ux, and φ is smooth (resp. real
analytic).
We also claim that ∇xφ(x

′) = N(x′) for all x′ ∈ Ux ∩ Σ. Indeed, by definition of φ we have
the identity φ(Ψ(y)) = yn for all y in the domain. Differentiating this with respect to yi for
i = 1, . . . , n− 1 gives

∇xφ(Ψ(y)) · ∂yiΨ(y) = 0.

Thus ∇xφ(Ψ(y)) is orthogonal to each ∂yiΨ(y), hence orthogonal to the tangent space of Σ at
Ψ(y), and therefore collinear with N(Ψ(y)). Differentiating instead with respect to yn gives

∇xφ(Ψ(y)) · ∂ynΨ(y) = ∇xφ(Ψ(y)) ·N(Ψ̃(ỹ)) = 1.

Since ∇xφ(Ψ(y)) is collinear with N(Ψ(y)) and their dot product is 1, they must agree. In
particular, for x′ = Ψ(ỹ′, 0) ∈ Σ, we have ∇xφ(x

′) = N(x′).

To prescribe the conditions on Σ complementing equation (2.6), we will need derivatives of u
in the normal direction.

Definition 2.15. Let Σ ⊂ U ⊂ Rn be a smooth (resp. real analytic) hypersurface, let N :
Σ → Rn be the corresponding smooth (resp. real analytic) unit normal, and let u ∈ Cj(U). For
x ∈ Σ and j ∈ N, we define the j-th normal derivative of u at x by

∂jNu(x) :=
∑
|α|=j

∂αxu(x)N(x)α =
∑

α1+···+αn=j

∂ju

∂xα1
1 . . . ∂xαn

n

(x)N1(x)
α1 . . . Nn(x)

αn .

Now, we prescribe on a hypersurface Σ the value of u together with its first k − 1 normal
derivatives. Informally, this specifies how the solution starts to extend away from Σ. This
motivates the following definition.

Definition 2.16. Let Σ ⊂ U ⊂ Rn be a smooth (resp. real analytic) hypersurface, and let
g0, . . . , gk−1 : Σ → R be smooth (resp. real analytic) functions. The Cauchy problem for
(2.6) with Cauchy data g0, . . . , gk−1 on Σ is the problem of finding a function u solving (2.6) in
an open set V ⊂ U such that Σ ∩ V ̸= ∅, and

u = g0, ∂Nu = g1, ∂2Nu = g2, . . . , ∂
k−1
N u = gk−1 on Σ ∩ V. (2.8)

We call Σ the Cauchy hypersurface and {gj}k−1
j=0 the Cauchy data.
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LECTURE 7
Remark 2.17 (Are (2.8) “boundary conditions”?). We prescribe data on a hypersurface Σ ⊂ U ,
which in general is not the topological boundary ∂U . We will still sometimes call these
“boundary conditions”. The reason is that near any point, Σ = {φ = 0} splits a neighbourhood
into the two sides {φ > 0} and {φ < 0}, and Σ is their common boundary. For instance, we
will see that for the wave equation utt −∆xu = 0 on U = Rn × (−T, T ), prescribing u and ut
on {t = 0} lets us solve the equation both forward and backward in time (so with V = U ).
The hypersurface {t = 0} is not the boundary of U , but it can actually be thought as “initial
boundary” of (for instance) the future region {t > 0}.

2.3.2 The non-characteristic condition

To determine a smooth or real analytic solution u, certainly all the derivatives of u must
be determined from equations (2.6)–(2.8), and in particular all its derivatives on Σ must be
determined by these. Leaving aside the question of constructing the solution, we want to
understand why (2.8) are natural to solve the Cauchy problem in the analytic class and what
kind of conditions impose. To gain intuition, consider the case U = Rn and Σ = {xn = 0} a
hyperplane, the case of flat Cauchy hypersurface19. Then N = en is constant, and (2.8) reads

u(x′, 0) = g0(x
′), ∂xnu(x

′, 0) = g1(x
′), . . . , ∂ k−1

xn
u(x′, 0) = gk−1(x

′), x = (x′, 0) ∈ Σ.

Differentiating (2.8) on Σ along ∂αx with α = (α′, j), α′ ∈ Nn−1, 0 ≤ j ≤ k − 1, gives

∂αxu(x
′, 0) = ∂α

′

x′ ∂ j
xn
u(x′, 0) = ∂α

′

x′ gj(x
′). (2.9)

The first missing derivative is ∂ k
xn
u, which is not prescribed by (2.8). We recover it from the

PDE (2.6). Set
A(x) := a(0,...,0,k)

(
x, u(x),∇u(x), . . . ,∇k−1u(x)

)
.

By (2.9), A(x) is determined on Σ by the Cauchy data ∂α′

x′ gj with |α′|+ j ≤ k− 1. If A(x) ̸= 0,
then on Σ we can single out ∂kxn

u(x) by rewriting the PDE:

∂ k
xn
u(x) = −

∑
|α|=k

αn≤k−1

aα(. . . )

A(x)
∂αxu(x) − a0(. . . )

A(x)
.

The right-hand side depends only on the quantities ∂α′

x′ gj with |α′|+ j ≤ k− 1 thanks to (2.9),
so ∂ k

xn
u is determined on Σ. The condition A(x) ̸= 0 is precisely the non-characteristic

condition in the case of flat Cauchy hypersurface.
It allows to actually determine higher-order derivatives. Indeed if we denote gk := ∂kxn

u on Σ,
which we have just determined from g0, . . . , gk−1, we can now differentiate the PDE along xn
to obtain∑
|α|=k

aα
(
x, u(x),∇u(x), . . . ,∇k−1u(x)

)
∂αx∂xnu(x) + ã0

(
x, u(x),∇u(x), . . . ,∇ku(x)

)
= 0

with the new ã0 given by

ã0 (. . . ) :=
∑
|α|=k

∂xn

[
aα
(
x, u(x), . . . ,∇k−1u(x)

)]
∂αxu(x)+∂xn

[
a0
(
x, u(x), . . . ,∇k−1u(x)

)]
,

19Here and later “flat Cauchy hypersurface” means a hyperplane.
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and assuming again A(x) ̸= 0 on Σ we can compute

gk+1(x) := ∂k+1
xn

u(x) = −
∑

|α|=k, αn≤k−1

aα
(
x, . . . ,∇k−1u(x)

)
A(x)

∂αx∂xnu(x)−
ã0
(
x, . . . ,∇ku(x)

)
A(x)

so that gk+1 is a function of ∂α′

x′ gj for |α′|+ j ≤ k on Σ, and therefore is a function of ∂α′

x′ gj for
|α′|+ j ≤ k− 1, on Σ by the previous step. Taking also derivatives in the tangential directions,
this determines ∂αxu on Σ for α = (α′, j) with α′ ∈ Nn−1 and j ≤ k + 1. By induction on k
one determines all derivatives of u on Σ. The general condition reads as follow.

Definition 2.18. Given Σ ⊂ U ⊂ Rn a smooth (resp. real analytic) hypersurface as defined
above, and g0, . . . , gk−1 : Σ → R smooth (resp. real analytic) functions on Σ, we say that the
boundary conditions (2.8) are non-characteristic for the PDE (2.6) if

A(x) :=
∑
|α|=k

aα
(
x, u(x),∇u(x), . . . ,∇k−1u(x)

)
N(x)α ̸= 0, ∀x ∈ Σ. (2.10)

Note that A(x) only depends on the data (PDE’s coefficients aα with |α| = k, the Cauchy
hypersurface Σ and the Cauchy data {gj}k−1

j=0 ). For the moment, we have justified (2.10) in the
flat case; the general case will be derived from this.

It is then natural to ask, given the PDE and the Cauchy data {gj}k−1
j=0 on which hypersurface

we have such condition. This motivates the following definition.

Definition 2.19. LetP be a linear differential operator of order k onRn,Pu :=
∑

|α|≤k aα(x) ∂
α
xu,

with smooth coefficients aα(x). The principal symbol of P at x is

σP (x, ξ) :=
∑
|α|=k

aα(x) ξ
α, ξ ∈ Rn.

Let Σ ⊂ Rn be a smooth hypersurface and let x ∈ Σ. If N(x) ̸= 0 is a vector normal to Σ
at x, we say that Σ is non-characteristic at x if σP (x,N(x)) ̸= 0. Otherwise we say that Σ is
characteristic at x. In terms of the characteristic cone at x defined by Cx := { ξ ∈ Rn \ {0} :
σP (x, ξ) = 0 }, Σ is characteristic at x if and only if N(x) ∈ Cx. As extension, we call Σ a
non-characteristic (resp. characteristic) hypersurface (for P ) if it is non-characteristic (resp.
characteristic) at every point x ∈ Σ.

Remark 2.20 (Quasilinear extension). If P is quasilinear of order k, that is

Pu(x) :=
∑
|α|≤k

aα
(
x, u(x),∇u(x), . . . , ∂k−1

x u(x)
)
∂αxu(x),

then for a given function u we freeze the coefficients at u and define the principal symbol along
u by

σP [u](x, ξ) :=
∑
|α|=k

aα
(
x, u(x),∇u(x), . . . , ∂k−1

x u(x)
)
ξα, ξ ∈ Rn.

We then set Cx[u] := {ξ ∈ Rn \ {0} : σP [u](x, ξ) = 0}, and say that a hypersurface Σ is non-
characteristic at x ∈ Σ (for P along u) if σP [u](x,N(x)) ̸= 0, i.e. equivalently N(x) /∈ Cx[u].
Otherwise Σ is characteristic at x.
Remark 2.21. With these definitions, (2.10) reads exactly σP [u](x,N(x)) ̸= 0 on Σ. Hence, the
characteristic cone collects, at each point x, the directions that are not admissible, in the sense
that the boundary conditions (2.8) are characteristic on any hypersurface with that normal
direction. This full directional picture is the natural starting point for the PDE classification
(elliptic, hyperbolic, parabolic, etc.).
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Let us justify (2.10). We reduce to the flat case using a local chart Φ. The unknown

v(y) := u(Ψ(y)), with Ψ = Φ−1, satisfies a k-th order quasilinear PDE∑
|α|=k

bα
(
y, v(y),∇v(y), . . . ,∇k−1v(y)

)
∂αy v + b0

(
y, v(y),∇v(y), . . . ,∇k−1v(y)

)
= 0

since, from u(x) = v(Φ(x)), by chain rule, ℓ-th order partial derivatives on u depend on
j ≤ ℓ-th order derivatives on v. In particular for each multiindex α with |α| = k we write

∂αxu(x) =
∑
|β|=k

C̃αβ(x)
(
∂βy v
)
(Φ(x)) + l.o.t.,

where C̃αβ(x) depends on ∇xΦ(x) only, and “l.o.t.” collects (lower order) terms involving
only ∂γy v with |γ| ≤ k − 1. For the pure normal multiindex β = (0, . . . , 0, k), since on Σ,
∇xΦn = N ,

C̃α,(0,...,0,k)(x) =
n∏

i=1

(
∂xi

Φn(x)
)αi =

(
∇xΦn(x)

)α
.

hence C̃α,(0,...,0,k)(x) = N(x)α. In the flat case we know that the non-characteristic condition
reads b(0,...,0,k)(. . . ) ̸= 0. Hence, in the general case we obtain

0 ̸= b(0,...,0,k)(Φ(x), v(Φ(x)), . . . ,∇k−1v(Φ(x))) =
∑
|α|=k

aα(x, u(x), . . . ,∇k−1u(x)) C̃α,(0,...,0,k)(x)

=
∑
|α|=k

aα(x, u(x), . . . ,∇k−1u(x))N(x)α,

which justifies (2.10). We can now state the key result, saying that (2.10) is not only necessary,
but also sufficient to solve the problem locally in the analytic class.

Theorem 2.22 (Cauchy-Kovalevakaya Theorem for PDEs). Given U , Σ, g0, . . . , gk−1 as above,
all real analytic and satisfying the non-characteristic condition at x ∈ Σ ⊂ U , then there is a
unique local analytic solution u to (2.6), (2.8). Namely, there is Ux ⊂ U open set around x so that
there is a unique analytic solution u to (2.6) on Ux satisfying the conditions (2.8) on Σ ∩ Ux.

Remark 2.23. This Cauchy-Kovalevskaya theorem was first proved by Cauchy in 1842 for first
order quasilinear evolution equations, then formulated in its general form by Kovalevskaya in
1874. At about the same time, Darboux reached similar results, although with less generality
than Kovalevskaya. Both Kovalevskaya’s and Darboux’s papers were published in 1875, and
the proof was later simplified by Goursat in his influential calculus textbook around 1900.
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2.3.3 Proof of the Cauchy-Kovalevskaya theorem for PDEs

Proof. Step 1. Reduction to a first-order system. First, by analyticity of Σ at x̂, we use an analytic
chart to reduce to the base point x̂ = 0 in an open neighborhood U0 with x = (x̃, xn) ∈ U0,
Σ ∩ U0 = {xn = 0} ∩ U0, and all coefficients aα still real analytic in U0. Second, since Σ
is non-characteristic at x̂, A(x) := a(0,...,0,k)(x) ̸= 0 and after possibly shrinking U0 we may
assume A(x) ̸= 0 on U0. Dividing the PDE by A(x) we reduce to a(0,...,0,k)(x) ≡ 1 on U0. Thus
the PDE can be written in the form

∂ k
xn
u(x) = −

∑
|α|=k

αn≤k−1

aα(x, u(x), . . . ,∇k−1u(x)) ∂αxu(x)−a0(x, . . . ,∇k−1u(x)), for x ∈ U0.

(2.11)
Third, we reduce the Cauchy conditions to ∂jxn

u(x̃, 0) = 0, for j = 0, . . . , k − 1, by looking
at the problem for v = u − G where G(x) :=

∑k−1
j=0

xj
n

j!
gj(x̃), and then renaming v as u for

simplicity. In particular u(x̃, 0) = 0, and hence u(0) = 0.
For each multiindex β = (β1, . . . , βn) ∈ Nn with |β| ≤ k − 1, define

Uβ(x) := ∂βxu(x), U(x) :=
(
Uβ(x)

)
|β|≤k−1

∈ Rm, m =

(
n+ k − 1

k − 1

)
.

We have ∂xnUβ = ∂β+en
x u. Consider three cases. (i) If |β| ≤ k − 2, then |β + en| ≤ k − 1, so

∂xnUβ = Uβ+en . (ii) If |β| = k− 1 and βn ≤ k− 2, pick i ≤ n− 1 with βi > 0, set α := β+ en
and write α = ei + γ with |γ| = k − 1; then ∂xnUβ = ∂αxu = ∂xi

(∂γxu) = ∂xi
Uγ . (iii) If

β = (0, . . . , 0, k − 1) and ∂xnUβ = ∂kxn
u. In this case we use (2.11), where on the right-hand

side each ∂αxu is of the form ∂xi
Uγ′ for some γ′ with |γ′| = k− 1 as in (ii). Hence, we obtained

∂xnUβ =
n−1∑
j=1

Rj
β(U(x), x) ∂xj

U(x) +Qβ(U(x), x),

for some analyticm row vectorRj
β , and scalarQβ . Stacking these identities over all |β| ≤ k−1,

we obtain a first-order quasilinear system

∂xnU =
n−1∑
j=1

B̃j(U(x), x̃, xn) ∂xj
U + B̃0(U(x), x̃, xn), (2.12)

where B̃j : Rm × Rn−1 × R → Mm×m and B̃0 : Rm × Rn−1 × R → Rm, with Cauchy data
U(x̃, 0) = 0. To remove explicit xn-dependence in the coefficients, adjoin one more component
Um+1(x) := xn, and define

u(x) := (U(x), Um+1(x)) ∈ Rm̃, m̃ = m+ 1.

Then (2.12) becomes

∂xnu =
n−1∑
j=1

bj(u(x), x̃) ∂xj
u+ b0(u(x), x̃), (2.13)

with Cauchy data u(x̃, 0) = 0, where bj : Rm̃ × Rn−1 → Mm̃×m̃ for j = 1, . . . , n − 1 and
b0 : Rm̃ × Rn−1 → Rm̃ are real analytic and depend only on (u, x̃).
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Step 2. Universal polynomials. For a multiindex α = (α̃, q) ∈ Nn−1 × N set ∂αx := ∂α̃x̃∂
q
xn

and
|α| = |α̃|+ q. Write u = (u1, . . . , um̃). For j = 0, 1, . . . , n− 1 we regard

bj = bj(z, x̃), (z, x̃) ∈ Rm̃ × Rn−1,

so in the PDE we evaluate bj at (z, x̃) = (u(x), x̃). Let bj,ℓ be the ℓ-th component of bj , and
define

Bj,ℓ,β := ∂β(z,x̃)bj,ℓ(0, 0),

for any multiindex β in the (z, x̃)-variables. We claim that for each α = (α̃, q) with q ≥ 0 and
each i, there exists a polynomial Pα,i with nonnegative integer coefficients such that

∂αxui(0) = Pα,i

(
Bj,ℓ,β

)
, (2.14)

where the arguments Bj,ℓ,β range over all j = 0, . . . , n − 1, ℓ = 1, . . . , m̃, and all β with
|β| ≤ |α| − 1. We proceed by induction on q. From the Cauchy data we have u(x̃, 0) = 0,
hence ∂α̃x̃u(x̃, 0)|x̃=0 = 0 for all α̃. Thus for α = (α̃, 0), ∂αxui(0) = 0, which is (2.14) with
Pα,i ≡ 0. Assume (2.14) holds for all (γ̃, q′) with q′ < q, and fix α = (α̃, q) with q ≥ 1.
Apply ∂α̃x̃∂q−1

xn
to (2.13) then evaluate at x = 0. On the left-hand side we have ∂αxui(0). On the

right-hand side, for j ≥ 1, Leibniz’ rule gives a sum of terms

C̃µ̃,r

(
∂µ̃x̃∂

r
xn
[ bj(u, x̃) ]|0

)(
∂α̃−µ̃
x̃ ∂ q−1−r

xn
[ ∂xj

u ]|0
)
, µ̃ ≤ α̃, 0 ≤ r ≤ q − 1,

where C̃µ̃,r are integer positive coefficients (deriving from product rule with multiindices).
Each factor of the first type is computed by the chain rule on the composition x 7→ (u(x), x̃) 7→
bj(z, x̃). This is a finite sum of terms of the form ĈBj,ℓ,β

∏
s ∂

γ(s)

x uis(0), where Ĉ is a positive
integer (deriving from the iterated chain rule), β is a multiindex in the (z, x̃)-variables, and the
factors ∂γ(s)

x uis(0) arise from the z-derivatives encoded in β. In particular, each γ(s) = (γ̃(s), qs)
satisfies qs ≤ r ≤ q − 1, so we can invoke the induction hypothesis to write them in terms of
polynomials ofBj,ℓ,β . For the second factor, ∂α̃−µ̃

x̃ ∂ q−1−r
xn

[ ∂xj
u ]|0 = ∂δxu(0) for some δ = (δ̃, q′)

with q′ = q − 1 − r ≤ q − 1. Since q′ < q and we again invoke the induction hypothesis.
Thus this second factor is also a polynomial in the admissible Bj,ℓ,β . The b0-term is handled
in the same way (without Leibniz’ rule). Therefore ∂αxui(0) is a polynomial in the Bj,ℓ,β with
|β| ≤ |α| − 1, with nonnegative integer coefficients, proving (2.14) for level q.

26



2.3 The Cauchy-Kovalevskaya theorem for PDEs 2 The Cauchy-Kovalevskaya Theorem

LECTURE 9
Step 3. Convergence of the candidate solution. Renaming m̃ to m for simplicity, we define

ui(x) :=
∑
α∈Nn

xα

α!
∂αxui(0), i = 1, . . . ,m, (2.15)

where, by the previous step, the coefficients ∂αxui(0) are determined by Pi,α computed at Bj,ℓ,β ,
hence are uniquely determined by the PDE and the Cauchy data. To prove that the series (2.15)
converges, we construct a majorant system. Let C, r > 0 and define

g(x, z) :=
Cr

r −∑n−1
j=1 xj −

∑m
k=1 zk

= C
∑
q≥0

(∑n−1
j=1 xj+

∑m
k=1 zk

r

)q
,

which is analytic if
∑n−1

j=1 |xj|+
∑m

k=1 |zk| < r. Since bj, b0 are real analytic near 0, the Taylor
coefficients of their components are bounded in absolute value by those of g, if we choose
C > 0 large and r > 0 small enough. Hence, defining

b∗j := gM1, b∗0 := gU1,

where M1 is the m×m matrix with 1 in all entries and U1 is the m-vector with 1 in all entries.
We obtain b∗j ≫ bj and b∗0 ≫ b0. Consider the auxiliary Cauchy problem

∂xnv =
n−1∑
j=1

b∗j(v, x̃) ∂xj
v + b∗0(v, x̃), with v(x̃, 0) = 0 on Σ. (2.16)

The solution is given by (verify it)

v(x) =
(r −∑n−1

j=1 xj)−
√(

r −∑n−1
j=1 xj

)2 − 2nmCr xn

nm
U1 (2.17)

that is real analytic in all variables near zero. This concludes the proof, since we have, defining
B∗

j,ℓ,β = ∂β(z,x̃)b
∗
j,ℓ(0, 0),

|∂αxui(0)| = |Pα,i (Bj,ℓ,β)| ≤ Pα,i (|Bj,ℓ,β|) ≤ Pα,i(B
∗
j,ℓ,β) = ∂αx vi(0),

so that v ≫ u at zero and the Taylor series (2.15) has a non-zero radius of analyticity. Unique-
ness follows because any other analytic solution satisfies the same recursion (2.14), hence has
the same Taylor coefficients at 0 and must agree with u in a neighborhood of x̂.

Remark 2.24 (Solving (2.16)). By symmetry we look for v(x) = w(ξ, t)U1, where U1 =
(1, . . . , 1) ∈ Rm, ξ := x1 + · · ·+ xn−1, t := xn. Then v = 0 on {t = 0} becomes w(ξ, 0) = 0.
Since all components of v are equal, the coefficients depend on v only through

∑m
α=1 vα = mw,

and on x̃ only through ξ, so b∗j(v, x̃) = mCr
r−ξ−mw

U1 for j ≤ n − 1 and b∗0(v, x̃) = Cr
r−ξ−mw

U1.
Using ∂xj

v = ∂ξwU1 for j ≤ n− 1 and ∂xnv = ∂twU1, the system reduces to

∂tw =
Cr

r − ξ −mw

[
(n− 1)m∂ξw + 1

]
, w(ξ, 0) = 0.

Write this as ∂tw − a ∂ξw = b with a = (n−1)mCr
r−ξ−mw

, b = Cr
r−ξ−mw

, and solve it by the method of
characteristics (that is the same method applied for solving Exercise 1.9, but here we need to
deal with a and b depending on the solution), to find

v(x) =
(r −∑n−1

j=1 xj)−
√

(r −∑n−1
j=1 xj)

2 − 2nmCr xn

nm
U1,

which solves the PDE with v = 0 on {xn = 0}, and it is analytic near zero.
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2.4 Limitations and classification
2.4.1 Limitations of the Cauchy-Kovalevskaya theorem

We list some limitations while looking for analytic solutions and using Cauchy-Kovalevskaya
theorem.

• Exercise 1.10 studies Kovalevskaya’s counterexample for the heat equation ∂tu = ∂2xu
on R2 with analytic data u(0, x) = 1

1+x2 . With Σ = {t = 0}, the hypersurface is
characteristic: the condition a2,0 ̸= 0 never holds, independently of the boundary data.
Thus, Cauchy-Kovalevskaya theorem does not apply. However, it can be seen with other
tools (e.g. heat semigroup, analytic energy methods) that the forward Cauchy problem
(for t > 0) for the heat equation is well posed20 (for example in the classical spaces Ck

with k ≥ 2) but the backward (t < 0) Cauchy problem is ill-posed. This shows a first
limitation: the theorem studies the problem in both forward and backward directions at
once.

• Transport and wave equations have localized effects such as ”finite speed of propagation":
a local perturbation on the hypersurface as an influence in a finite spacetime region.
However, analytic functions are globally determined from their local behaviour, so the
analytic framework cannot capture such qualitative properties. This is a limitation of
working in the analytic class.

• Another limitation of working inside the class of smooth solutions is that we cannot
understand the regularisation effect of the equation at hand. For instance any C2 solution
to ∆u = 0 is automatically smooth, and in fact real analytic. This promotion happens
thanks to the special structure of the equation, and it doesn’t happen in general.

• With Cauchy–Kovalevskaya theorem we cannot exclude the existence of other non analytic
solutions. Uniqueness in the C∞ class can fail for non-characteristic Cauchy problems
(except in the case of linear k-th order PDEs where Holmgren’s theorem shows that Ck

solutions to non-characteristic PDEs with real analytic coefficients are real analytic near
Σ).

• There is no general local existence result if we drop analyticity assumptions on data or
coefficients.

– Non-analytic Cauchy data. For the (full) Laplace equation ∆x,tu = 0 in variables
(x, t) with Σ = {t = 0} which is non-characteristic21, every harmonic solution is
real-analytic; hence its traces u|Σ and ∂νu|Σ are real-analytic. Therefore there is
no solution if we prescribe C∞ but not analytic data on Σ.

– Non-analytic coefficients. Even with smooth coefficients, local solvability can fail:
Lewy’s 1957 counterexample gives a smooth linear partial differential equation
without solution.

• The Cauchy problem for elliptic PDEs is intrinsically ill-posed in classical spaces such
as Ck, and the analyticity in the Cauchy-Kovalevskaya theorem is hiding this, as
Hadamard’s example shows (see Exercise 2.1). For (∂2t +∂2x)u = 0 on R2 with u(x, 0) = 0
and ∂tu(x, 0) = cos(ωx), the solution is u(x, t) = 1

ω
sinh(ωt) cos(ωx). Thus, for ω ≫ 1,

the data are O(1) while u(x, 1) = O(eω/ω) inL∞, so the solution operator is unbounded
as ω → ∞. Thus, despite applicability of Cauchy-Kovalevskaya theorem, the Cauchy

20For the heat equation with space domain Rn we need some restriction on the growth of u(x, t) as |x| → ∞
to guarantee uniqueness.

21This is different from ∆x,yu = 0 with t as a third variable, where {t = 0} is characteristic and the
Cauchy–Kovalevskaya theorem does not apply.
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problem is not the right framework for elliptic equations. In Chapter 4 we will see that
the boundary value problem is the correct framework.

2.4.2 Classification of PDEs

The Laplace ∆u = 0 and Poisson ∆u = f equations have σp(x, ξ) = |ξ|2 and the cone22

Cx = {0} for any x ∈ Rn. Equations without characteristic hypersurfaces are called elliptic
equations. Trying to capture the essence of the poor behaviour of the Laplace and Cauchy-
Riemann equations in relation to their Cauchy initial-time problems leads to the concept of
ellipticity. Ellipticity means that matrix (aij) has all eigenvalues strictly positive or all strictly
negative.

The wave equation □u = −∂2xn
u+
∑n−1

j=1 ∂
2
xj
u = 0 has σp(x, ξ) = ξ21+ · · ·+ξ2n−1−ξ2n, and

Cx = {ξ2n = ξ21 + · · ·+ ξ2n−1}, the (sound/light) cone. Hypersurfaces whose normal makes an
angle π/4 with the direction en are characteristic; here xn = t represents time. The transport
equation

∑n
j=1 cj(x) ∂xj

u = 0 has σp(x, ξ) = c⃗(x) · ξ, and Cx = c⃗(x)⊥. Hypersurfaces tangent
to c⃗ are characteristic. These are examples of hyperbolic equations. The idea of hyperbolicity
is an attempt to identify the class of PDEs for which the Cauchy-Kovalevskaya theorem can be
rescued in some sense when we relax the analyticity assumption.

The heat equation ∂tu = ∆xu has principal symbol
∑n−1

i=1 ξ
2
i and Cx = {ξ1 = · · · = xn−1 =

0}, so the characteristic hypersurfaces are time slices {t = const}; such equations are parabolic.
The class of parabolic equations is a class for which the evolution problem is well-posed for
positive times, but is ill-posed for negative times. The initial condition is characteristic and the
Cauchy-Kovalevskaya theorem fails. The informations is transmitted at infinite speed, and the
solution becomes analytic for positive times (regularisation).

The Schrödinger equation i∂tu+∆u = 0 has the same principal symbol and is dispersive.
The class of dispersive equations is a class in between hyperbolic equations (local well-
posedness for both forward and backward times, finite speed of propagation) and parabolic
equations (initial conditions are characteristic). To see why it’s called “dispersive,” take the
same 1-frequency ansatz u(t, x) = ei(kx−ωt). Plugging into the wave equation utt − uxx = 0
gives −ω2 + k2 = 0, so ω = |k|, instead into Schrödinger i ut + uxx = 0 gives ω = k2. The
map ω = ω(k) is the dispersion relation. Here we are interested in the region where |u|2 is
concentrated (a localized bump). Its speed is read from how ω changes with k. Thus, for the
wave equation dω/dk = ±1 (no spreading), while for Schrödinger dω/dk = 2k (depends on
k): different frequencies move at different speeds, so a bump is dispersing.

There are also of course equations of mixed type, e.g. the Euler-Tricomi equation
∂2xxu = x∂2yyu in R2 which is hyperbolic in the region {x > 0} and elliptic in the region
{x < 0}. There are also variants of these classes where some properties are weakened, e.g.
the hypoelliptic equations pioneered by Kolmogorov and Hörmander.

22The principal symbol is a k-homogeneous function in ξ, which explains the name “cone” for Cx.
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LECTURE 10

3 Functional toolbox
We review Hölder and Lebesgue spaces, then introduce weak derivatives and Sobolev spaces,
which measure regularity in an integral rather than pointwise sense. The aims are:

(i) to use Banach and Hilbertian techniques;
(ii) to work in spaces tracking energies or other physical quantities that are minimized in

elliptic PDEs and propagated in hyperbolic PDEs.
We then study approximation in Sobolev spaces, extension and trace results, and Sobolev
inequalities, which trade integrability of derivatives for improved regularity, integral or even
pointwise, of the function. We conclude with compactness results for Sobolev spaces.

3.1 Hölder Spaces
Definition 3.1 (Classical Ck spaces). Let U ⊂ Rn be open and k ∈ N0 ∪ {∞}.

Ck(U) := {u : U → R : ∂αxu exists and is continuous on U ∀ |α| ≤ k },
Ck

b (U) := {u ∈ Ck(U) : sup
x∈U

|∂αxu(x)| <∞ ∀ |α| ≤ k },

Ck(U) := {u ∈ Ck
b (U) : ∂αxu is uniformly continuous on U ∀ |α| ≤ k }.

Remark 3.2. Let k < ∞. Ck(U) does not admit a distance induce by a norm.23 In contrast,
Ck

b (U) and Ck(U) are Banach spaces with the norm

∥u∥Ck := max
|α|≤k

sup
x∈U

|∂αu(x)|.

Remark 3.3. Note that Ck(U) is defined via the behaviour on the open set U , not by properties
on U . Accordingly, the set of functions that are Ck on U is different, on unbounded sets, from
our definition of Ck(U). In particular, Ck(Rn) ̸= Ck(Rn) under our convention (check it),
even though Rn = Rn.

We turn to Hölder spaces that interpolate in between the Ck spaces.

Definition 3.4. Let U ⊂ Rn be open and γ ∈ (0, 1]. Define the seminorm[
u
]
C0,γ(U)

:= sup
x,y∈U
x ̸=y

|u(x)− u(y)|
|x− y|γ .

The 0-Hölder space with index γ is

C0,γ(U) :=
{
u : U → R bounded

∣∣∣ [u]
C0,γ(U)

<∞
}
.

For k ∈ N, the k-Hölder space with index γ is

Ck,γ(U) :=
{
u ∈ Ck(U)

∣∣∣ ∂αxu ∈ C0,γ(U) for all |α| ≤ k
}
.

23With the Ck natural topology, that is uj → u if for every compact K ⋐ U and every |α| ≤ k,
supx∈K |∂α(uj − u)(x)| → 0, Ck(U) is not normable. Instead it is a Fréchet space: complete and metriz-
able, with topology determined by a countable family of seminorms rather than a single norm.
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These spaces are Banach spaces for the norm (check it)

∥u∥Ck,γ(U) := ∥u∥Ck(U) +
∑
|α|≤k

[
∂αxu

]
C0,γ(U)

.

Remark 3.5. C0,1(U) is the space of Lipschitz functions.
Taking γ > 1 in the Hölder condition forces u to be differentiable with ∇u = 0, hence u is
constant.
Hölder continuity on U with a uniform constant C > 0 (as in our definition) implies uniform
continuity, which justifies writing these spaces with U rather than U .
A norm equivalent to ∥u∥Ck,γ(U) is

∥u∥′
Ck,γ(U)

= ∥u∥Ck(U) +
∑
|α|=k

[
∂αxu

]
C0,γ(U)

.

3.2 Lebesgue spaces
Definition 3.6 (Lebesgue spaces). Let U ⊂ Rn be open and p ∈ [1,∞]. The Lebesgue space
Lp(U) consists of measurable u : U → R, considered as equivalence classes up to equality
almost everywhere (a.e.), such that

∫
U |u|p dx <∞ if p ∈ [1,∞) or ess supU |u| <∞ if p = ∞.

The local Lebesgue space is

Lp
loc(U) := {u : U → R measurable on U : u ∈ Lp(V) for every open V ⋐ U},

where V ⋐ U means that the closure V is compact and included in U .

We define the associated norms

∥u∥Lp(U) :=

{( ∫
U |u|p dx

)1/p
, for 1 ≤ p <∞,

ess supx∈U |u(x)|, for p = ∞.

Lp(U) is a Banach space.24 For p = 2, with ⟨u, v⟩ =
∫
U uv dx, L2(U) is a Hilbert space.

The main theorems of Lebesgue integration theory are the following. Assume {fn}n are
measurable functions.

1. Monotone convergence: If 0 ≤ f1 ≤ f2 ≤ · · · and fn ↑ f a.e., then
∫
U fn dx ↑

∫
U f dx.

2. Fatou’s lemma: For nonnegative {fn},
∫
U lim infn fn dx ≤ lim infn

∫
U fn dx.

3. Dominated convergence: If fn → f a.e. and |fn| ≤ g a.e. with g ∈ L1(U), then∫
U fn dx→

∫
U f dx.

3.3 Weak (generalised) derivatives
In order to measure regularity through integrals and define Sobolev spaces, it is natural to
introduce a generalised notion of differentiability.

Definition 3.7. Given U ⊂ Rn open, u, v ∈ L1
loc(U), and α ∈ Nn, we say that v is the α weak

derivative of u, denoted by v = Dα
xu, if

∀φ ∈ C∞
c (U),

∫
U
u∂αxφ dx = (−1)|α|

∫
U
vφ dx.

24Lp
loc(U) is not normed but is Fréchet.
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This means that the weak derivative verifies the formula of integration by parts, provided we
avoid boundaries (using compact supported test functions).
Remark 3.8 (Extension to distributions). A distribution on an open set U ⊂ Rn is a continuous
linear functional T : C∞

c (U) → R; the space of distributions is D′(U). For any multi-index
α, the distributional derivative ∂αT ∈ D′(U) is defined by ⟨∂αT, φ⟩ := (−1)|α| ⟨T, ∂αφ⟩ for
φ ∈ C∞

c (U). This extends the weak derivative definition for L1
loc(U) functions to D′(U). As an

example, let H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0. Then DxH = δ0, the Dirac Delta, in
D′(R); hence H has a distributional derivative but no L1

loc weak derivative, since δ0 /∈ L1
loc(R).

Remark 3.9. The weak derivative, when it exists in L1
loc(U), is unique. This follows by the

fundamental lemma of the calculus of variations, saying that if w ∈ L1
loc(U) and

∫
U wφdx = 0

for all φ ∈ C∞
c (U), then w = 0 a.e. in U . In particular, if u ∈ Ck(U) and |α| ≤ k, then the

weak and classical derivatives coincide (prove it).
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LECTURE 11
Definition 3.10. Let U ⊂ Rn be open, k ∈ N, and 1 ≤ p ≤ ∞. The Sobolev space W k,p(U) is

W k,p(U) :=
{
u ∈ L1

loc(U) : Dαu exists and Dαu ∈ Lp(U) for all |α| ≤ k
}
.

It is equipped with the norm

∥u∥Wk,p(U) =


(∑
|α|≤k

∥Dαu∥pLp(U)

)1/p
, 1 ≤ p <∞,

max
|α|≤k

∥Dαu∥L∞(U), p = ∞.

We also define the subspace W k,p
0 (U) as W k,p

0 (U) := C∞
c (U)∥·∥Wk,p(U) , that is the closure of

C∞
c (U) in W k,p(U).

Remark 3.11. (W k,p(U), ∥·∥Wk,p(U)) is a Banach space. The completeness of (W k,p(U), ∥·∥Wk,p)
follows from the completeness ofLp(U) and the fact that if uj → u andDαuj → vα inLp(U) for
all |α| ≤ k, then vα = Dαu. For p = 2 we write Hk(U) := W k,2(U) and Hk

0 (U) := W k,2
0 (U);

these are Hilbert spaces with inner product ⟨u, v⟩Hk(U) :=
∑

|α|≤k

∫
U D

αu(x)Dαv(x), dx.

Example 3.12. Let u(x) = |x|−s on B(0, 1). One checks that u ∈ L1(B(0, 1)) if and only
if s < n, and u ∈ W 1,p(B(0, 1)) if and only if s < n−p

p
, with Dxi

u(x) = −s xi |x|−s−2

(the weak derivative) in B(0, 1). In particular, if we require u ∈ W 1,p(B(0, 1)) with p > n,
then the restriction s < n−p

p
shows that u is actually continuous; this is reminiscent of the

Sobolev(-Morrey) inequalities that we will discuss later.

3.4 Approximation in Sobolev spaces
From our definition of W k,p via weak derivatives, it is not obvious that Sobolev functions can
be approximated by regular ones: Meyers–Serrin theorem25 (which is Proposition 3.14 (5))
shows that C∞ is dense in W k,p. This lets us prove statements for smooth functions and then
take limits to get the analogue statement for Sobolev functions.

Definition 3.13. A family (ϕε)ε>0 ⊂ C∞
c (Rn) is a standard mollifier if, for every ε > 0,

suppϕε ⊂ B(0, ε), ϕε ≥ 0,

∫
Rn

ϕε(x) dx = 1.

If U ⊂ Rn is open and u ∈ L1
loc(U), the mollification uε : Uε → R of u at scale ε is

uε := ϕε ∗ u on Uε := {x ∈ U : dist(x, ∂U) > ε}.

Proposition 3.14. Let U ⊂ Rn open, k ∈ N and p ∈ [1,+∞).

1. There exists a standard mollifier.
2. If u ∈ L1

loc(U), the mollification uε ∈ C∞(Uε) with uε → u in L1
loc(U), i.e. in L1(V) for

any V ⊂⊂ U , and almost everywhere in U .
25Historically, Sobolev spaces were defined either via weak derivatives or as the closure of smooth functions;

the Meyers–Serrin theorem shows these definitions coincide. See Meyers–Serrin “H = W” (1964).
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3. If u ∈ Ck(U), then, for |α| ≤ k, ∂αxuε → ∂αxu uniformly on compact subsets of U .
4. (Local Sobolev smoothing) If u ∈ W k,p(U), then uε → u in W k,p

loc (U), i.e. in W k,p(V) for
any open V ⊂⊂ U .

5. (Global approximation away from the boundary) If U is bounded and u ∈ W k,p(U), then
there exists a sequence uj ∈ C∞(U) ∩W k,p(U) so that uj → u in W k,p(U).

6. (Global approximation up to ∂U ) Given U bounded with ∂U being locally the graph of a
Lipschitz function, and u ∈ W k,p(U), there is a sequence uj ∈ C∞(U) such that uj → u
in W k,p(U).

Proof of Proposition 3.14. 1. Use for instance φ(x) = C exp(−(1 − |x|2)−1) on B(0, 1) and
φ ≡ 0 outside B(0, 1) with a well-chosen C > 0, and rescale it φε(x) = ε−nφ(x/ε).
2. Using the definitions it is easy to see that uε is continuous, and then differentiable in
any coordinate direction {ej}nj=1 by taking the limit as h → 0 of the difference quotient
h−1[uε(x+hej)−uε(x)]. Then iterate the argument and deduce ∂αuε = (∂αρε)∗u ∈ C∞(Uε).

Fix V ⋐ U and set ε0 := 1
2
dist(V , ∂U) > 0. For 0 < ε ≤ ε0 and x ∈ V we have

uε(x)− u(x) =

∫
Rn

φε(y)
(
u(x− y)− u(x)

)
dy,

hence, by Fubini,

∥uε − u∥L1(V) ≤
∫
Rn

φε(y) ∥τ−yu− u∥L1(V) dy, where τhu(x) := u(x+ h). (3.1)

We recall that ∥τhu−u∥L1(V) → 0 as h→ 0 (continuity of translations in L1
loc). Indeed, choose

W with V ⋐ W ⋐ U and ϕ ∈ C∞
c (W) with ∥u− ϕ∥L1(W) < ε (density of smooths in L1). For

|h| small so that V + h ⊂ W ,

∥τhu− u∥L1(V) ≤ ∥τh(u− ϕ)∥L1(V) + ∥τhϕ− ϕ∥L1(V) + ∥ϕ− u∥L1(V) < 2ε+ ∥τhϕ− ϕ∥L1(V).

Since ϕ is smooth with compact support, τhϕ → ϕ uniformly, hence in L1(V); thus the last
term is < ε for |h| small. Therefore ∥τhu− u∥L1(V) → 0, and because suppφε ⊂ B(0, ε) and∫
φε = 1, the right-hand side of (3.1) tends to 0 as ε→ 0. This proves uε → u in L1

loc(U).
For almost everywhere convergence, note that φε ≥ 0,

∫
φε = 1, and suppφε ⊂ B(0, ε)

give

|uε(x)− u(x)| ≤
∫
φε(y) |u(x− y)− u(x)| dy ≤ ∥φ∥∞

|B(0, ε)|

∫
B(0,ε)

|u(x− y)− u(x)| dy.

By the Lebesgue differentiation theorem (the averages of u over smaller and smaller balls
tends to u(x) for almost every point x, the Lebesgue points), the right-hand side → 0 at every
Lebesgue point of u. Hence uε(x) → u(x) for a.e. x ∈ U .
3. Let u ∈ Ck(U) and fix V ⋐ U . Set ε0 := 1

2
dist(V , ∂U) > 0, so V ⊂ Uε for 0 < ε ≤ ε0. For

any multiindex |α| ≤ k and 0 < ε ≤ ε0,

∂αxuε = ∂αx (φε ∗ u) = φε ∗ ∂αu on V ,

since u ∈ Ck and φε ∈ C∞
c justify differentiation under the integral. Define, for r ∈ [0, ε0],

the modulus of continuity

ωα(r) := sup
x∈V
|h|≤r

∣∣∂αu(x− h)− ∂αu(x)
∣∣.
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Because ∂αu is uniformly continuous on {x ∈ U : dist(x,V) ≤ ε0}, we have ωα(r) → 0 as
r → 0. Using suppφε ⊂ B(0, ε) and

∫
φε = 1,

sup
x∈V

∣∣∂αuε(x)− ∂αu(x)
∣∣ ≤ ∫

B(0,ε)

φε(y)ωα(|y|) dy ≤ ωα(ε) → 0 as ε→ 0.

Thus ∂αuε → ∂αu uniformly on V , and since V ⋐ U was arbitrary, on every compact subset
of U .
4. Fix V ⋐ U and set ε0 := 1

2
dist(V , ∂U) > 0. It is enough to prove ∥∂αuε − ∂αu∥Lp(V) → 0.

as ε→ 0, since summing over |α| ≤ k yields uε → u in W k,p(V). For 0 < ε ≤ ε0 and |α| ≤ k,
using Fubini and the definition of weak derivatives, ∂αuε = ∂α(φε ∗ u) = φε ∗ ∂αu on V . For
f ∈ Lp

loc(U), by Jensen’s inequality (since φε ≥ 0 and
∫
φε = 1),

∥φε ∗ f − f∥Lp(V) =
∥∥∥∫ φε(y)

(
τ−yf − f

)
dy
∥∥∥
Lp(V)

≤
∫
φε(y) ∥τ−yf − f∥Lp(V) dy.

Translations are continuous in Lp
loc (as for p = 1 above), hence the right-hand side → 0 as

ε → 0 because suppφε ⊂ B(0, ε). Apply this with f = ∂αu for each |α| ≤ k and use the
identity above.
5. Fix δ > 0. Decompose U = ∪ℓ≥0Vℓ where we define

Uℓ := {x ∈ U : dist(x, ∂U) > ℓ−1}, Vℓ := Uℓ+3 \ Uℓ+1 for ℓ ≥ 1,

and choose V0 with U \ ⋃ℓ≥1 Vℓ ⊂ V0 ⋐ U . Let (ξℓ)ℓ≥0 be a smooth partition of unity
subordinate to (Vℓ).26 For each ℓ, pick 0 < εℓ <

1
2
dist(Vℓ, ∂U) such that, by (iv),

vℓ := φεℓ ∗ (ξℓu) ∈ C∞(U) ∩W k,p(U), ∥vℓ − ξℓu∥Wk,p(U) ≤
δ

2ℓ+1
.

Here we are smoothing a localized version of u. Set u(δ) :=
∑

ℓ≥0 vℓ. The sum is locally finite,
hence u(δ) ∈ C∞(U) ∩W k,p(U), and

∥u− u(δ)∥Wk,p(U) =
∥∥∥∑

ℓ≥0

(ξℓu− vℓ)
∥∥∥
Wk,p(U)

≤
∑
ℓ≥0

δ

2ℓ+1
= δ.

Choosing δ = 2−j and uj := u(2
−j) yields uj → u in W k,p(U).

26A smooth partition of unity subordinate to (Vℓ)ℓ≥0 is a locally finite family (ξℓ)ℓ≥0 ⊂ C∞
c (U) with 0 ≤

ξℓ ≤ 1, supp ξℓ ⊂ Vℓ for each ℓ, and
∑

ℓ≥0 ξℓ(x) ≡ 1 for all x ∈ U . Locally finite means every x ∈ U has a
neighborhood meeting only finitely many supp ξℓ, so the sum (and its derivatives) are well defined.
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6. Step 1. Partition of unity. Let U ⊂ Rn be a bounded Lipschitz domain. Cover ∂U by

finitely many boundary charts {Bℓ}Nℓ=1 and one interior set B0 ⋐ U , so that for ℓ ≥ 1 in local
coordinates we have

U ∩Bℓ = {(x′, t) ∈ Bℓ : t > Γℓ(x
′)}, Γℓ Lipschitz with constant Lip(Γℓ) =: Lℓ.

Pick a smooth partition of unity {ψℓ}Nℓ=0 with suppψℓ ⊂ Bℓ and
∑N

ℓ=0 ψℓ ≡ 1 on U .
Step 2. Mollification and translation on each piece. For the case ℓ = 0, we just choose ε > 0
with ε < dist(suppψ0, ∂U) and let ρε be a standard mollifier. Then

ρε ∗ (ψ0u) ∈ C∞(U) and ρε ∗ (ψ0u) → ψ0u in W k,p(U) as ε→ 0.

A plain convolution near ∂U would ask for points outside U to evaluate u, which is not allowed.
Fix ℓ ∈ {1, . . . , N}. Denote translations by τhu(x) := u(x+ h). For ε > 0 small enough (so
the balls of radius ε used below stay inside Bℓ), define on U ∩Bℓ[

ρε ∗ τλℓεen(ψℓu)
]
(x) =

∫
Rn

ρε(y) (ψℓu)
(
x− y + λℓεen

)
dy.

This is the usual convolution evaluated after the vertical translation τλℓεen , i.e. a push into U .
The inward translation τλℓεen possibly avoids any exterior sampling, so we can smooth using
only interior values. We must check that the ε–ball used by the standard mollifier stays inside
U after this push.

Step 3. Checking that ρε ∗ τλℓεen(ψℓu) requires evaluating u only on U . Thanks to the
Lipschitz boundary we have that there exists λℓ ∈ R so that

∀x ∈ ∂U ∩B(xℓ, rℓ), ∀ ε > 0 small, B
(
x+ λℓεen, ε

)
⊂ U .

To see this, fix (x′,Γℓ(x
′)) ∈ ∂U ∩ B(xℓ, rℓ) and set λℓ := Lℓ + 2. For ε > 0 small, any

y = (y′, yn) ∈ B
(
(x′,Γℓ(x

′) + λℓεen), ε
)

satisfies

|y′ − x′| < ε, yn > Γℓ(x
′) + (λℓ − 1)ε.

Since Γ is Lipschitz we have

Γℓ(y
′) ≤ Γℓ(x

′) + Lℓ|y′ − x′| < Γℓ(x
′) + Lℓε,

hence
yn − Γℓ(y

′) > (λℓ − 1− Lℓ)ε = ε > 0.

Hence the whole ball B
(
(x′,Γℓ(x

′) + λℓεen), ε
)

lies above the graph Γℓ, this it is inside U .
Consequently, ρε ∗ τλℓεen(ψℓu) only evaluates values of u inside U and

ρε ∗ τλℓεen(ψℓu) ∈ C∞(Bℓ ∩ U).

Step 4. Construction of the global approximation. Set

uε := ρε ∗ (ψ0u) +
N∑
ℓ=1

ρε ∗ τλℓεen(ψℓu) ∈ C∞(U).
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Since
∑N

ℓ=0 ψℓu = u, it suffices to pass to the limit on each piece. The convergence in B0 was
noted above. Fix ℓ ≥ 1. Using mollification and the W k,p

loc continuity of translations (which
follows from the Lp

loc case) we get

∥ρε ∗ τλεen(ψℓu)− ψℓu∥Wk,p(U) → 0 as ε→ 0. (3.2)

Precisely, for any |α| ≤ k write

Dα
(
ρε ∗ τλεen(ψℓu)− ψℓu

)
= Aε,α +Bε,α,

where

Aε,α := ρε ∗ τλεenDα(ψℓu)− τλεenD
α(ψℓu), Bε,α := τλεenD

α(ψℓu)−Dα(ψℓu).

Then ∥Aε,α∥Lp(U) → 0 by mollification (part 4. of the proposition, with k = 0), and ∥Bε,α∥Lp(U) →
0 by translation continuity (apply Leibniz rule, which follows from Exercise 2.5, to Dα(ψℓu)
and use that Dγψℓ ∈ C∞

c ). Note that all these convergences are on suppψℓ ⋐ U . Summing
over |α| ≤ k gives (3.2).
Finally, summing over ℓ gives ∥uε − u∥Wk,p(U) → 0; then choose εj → 0 and set uj := uεj ∈
C∞(U).

3.5 Extensions and traces
In this section we extend Sobolev functions to larger domains with the Sobolev norm controlled
by the original one. We also show that, unlike general Lp functions, Sobolev functions admit a
well-defined trace (i.e. a restriction) on lower-dimensional, sets (of null Lebesgue measure).

Theorem 3.15 (Extension for W 1,p). Let U ⊂ Rn be a bounded C1 domain and let V ⊂ Rn

be a bounded open set with U ⋐ V . For any p ∈ [1,∞) there exists a bounded linear extension
operator

E : W 1,p(U) → W 1,p(Rn)

such that for every u ∈ W 1,p(U),

E(u) = u a.e. on U , suppE(u) ⊂ V .

Remark 3.16. Boundedness means there is C = C(U ,V , p) > 0 with

∥E(u)∥W 1,p(Rn) ≤ C ∥u∥W 1,p(U) for all u ∈ W 1,p(U).

We call E the extension of u to Rn. For (essential) support we mean, as for Lebesgue functions,
suppE(u) := Rn \⋃ {U ⊂ Rn open : E(u) = 0 a.e. on U }.

Proof. Step 1: Reflection Fix x0 ∈ ∂U and assume ∂U is flat near x0, i.e., there exists a ball B
centered at x0 with

∂U ∩B = {xn = 0}, B+ := B ∩ {xn > 0} ⊂ U , B− := B ∩ {xn < 0} ⊂ Rn \ U .

Assume u ∈ C1(B+) and define the higher order reflection of ũ from B+ to B− by

ũ(x′, xn) =

u(x
′, xn), xn ≥ 0,

−3u(x′,−xn) + 4u
(
x′,−xn

2

)
, xn < 0,

(3.3)
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where x′ = (x1, . . . , xn−1). Note that this extension is linear in u. Check from (3.3) that ũ is
continuous across {xn = 0}. Then, we check that is C1 across {xn = 0}. Indeed, from the
definition we see that the tangential derivatives are continuous, and for the normal derivative
we get, for xn < 0,

∂xnũ(x
′, xn) = 3 ∂xnu(x

′,−xn)− 2 ∂xnu
(
x′,−xn

2

)
,

so, as xn → 0−, it agrees with ∂xnu(x
′, 0). Therefore ũ ∈ C1(B) and agrees with u on B+.

Using (3.3) and the chain rule one obtains

∥ũ∥W 1,p(B) ≤ C ∥u∥W 1,p(B+), (3.4)

for some C = C(n, p) independent of u.
Step 2: Flattening the local C1 boundary. Fix x0 ∈ ∂U . Since ∂U is C1, there exist a ball B
centered at x0 and a C1-diffeomorphism Φ : B → Φ(B) with C1 inverse, such that, writing
y = Φ(x) and x = Φ−1(y),

Φ(∂U ∩B) = {yn = 0} ∩ Φ(B), Φ(U ∩B) = {yn > 0} ∩ Φ(B).

Moreover, by shrinking B if necessary, we may assume

0 < c0 ≤ | detDΦ(x)|, | detDΦ−1(y)| ≤ C0 and ∥DΦ∥L∞(B) + ∥DΦ−1∥L∞(Φ(B)) ≤M,

for some constants c0, C0,M ≥ 1 depending only on the chart.
Let u ∈ C1(U ∩B) and define

v(y) := u(Φ−1(y)) for y ∈ Φ(B) ∩ {yn ≥ 0}.
Since the boundary is flat in y coordinates, apply Step 1 on Φ(B) to obtain an extension
ṽ ∈ W 1,p(Φ(B)) with

∥ṽ∥W 1,p(Φ(B)) ≤ C1 ∥v∥
W 1,p

(
Φ(B)∩{yn>0}

), (3.5)

where C1 = C1(p, n). Pull back to x coordinates by setting

ũ(x) := ṽ(Φ(x)) for x ∈ B.

From the chain rule we get the estimates

∥ũ∥pLp(B) =

∫
B

|ṽ(Φ(x))|p dx ≤ c−1
0

∫
Φ(B)

|ṽ(y)|p dy,

∥∇ũ∥pLp(B) =

∫
B

∣∣DΦ(x)⊤∇ṽ(Φ(x))
∣∣p dx ≤ c−1

0 ∥DΦ∥pL∞(B)

∫
Φ(B)

|∇ṽ(y)|p dy,

hence
∥ũ∥W 1,p(B) ≤ C2 ∥ṽ∥W 1,p(Φ(B)), (3.6)

for some C2 = C2(p, n, c0,M). Similarly, for v(y) = u(Φ−1(y)) on Φ(B) ∩ {yn > 0},

∥v∥
W 1,p

(
Φ(B)∩{yn>0}

) ≤ C3 ∥u∥W 1,p(U∩B), (3.7)

for some C3 = C3(p, n, C0,M). Combining (3.5), (3.6), and (3.7) yields

∥ũ∥W 1,p(B) ≤ C̃ ∥u∥W 1,p(U∩B), C̃ := C1C2C3, (3.8)

where C̃ = C̃(p, n, c0, C0,M). Finally, note that ũ = u on U ∩B by construction. This gives
a local bounded linear extension on B.
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LECTURE 13
Step 3: Partition of unity Cover ∂U by finitely many balls B1, . . . , BN . Also, choose

asetB0 ⋐ U so that U ⊂ B0 ∪
⋃N

i=1Bi. Take a partition of unity {ξi}Ni=0 ⊂ C∞
c (Bi) subordi-

nated to {Bi}ni=0 with
∑
ξi ≡ 1 on U . For u ∈ C1(U), extend each χiu for i ≥ 1 to Ei(ξiu) by

Step 2 from Bi ∩ U to Bi, and set

Eu :=
N∑
i=0

Ei(ξiu),

where E0(ξ0u) = ξu is just the identity from B0 into itself. Choosing the cover inside V and
shrinking supports if necessary gives supp(Eu) ⊂ V . Finite overlap and (3.8) give

∥Eu∥W 1,p(Rn) ≤ C ∥u∥W 1,p(U).

Step 4: Density. Finally we remove the assumption u ∈ C1(U ) by a density argument.
By the previous theorem (since ∂U being C1 is in particular Lipschitz) there is uj ∈ C∞(U)
converging to u in W 1,p(U). Since E is linear and bounded we deduce that Euj is Cauchy in
W 1,p(V) and therefore converges to some Eu with the expected bound. The limit does not
depend on the approximation sequence since for two sequences we have∥∥Eu1j − Eu2j

∥∥
W 1,p(V) =

∥∥E (u1j − u2j
)∥∥

W 1,p(V) ≤ C
∥∥u1j − u2j

∥∥
W 1,p(U)

→ 0 as j → ∞

which concludes the proof.

Remark 3.17. One can construct an extension operator in W k,p for k ≥ 2. The argument is
similar with an appropriate (and more complicated) reflection: in the flat case it has the form
v̄(y) :=

∑k
j=1 cjv(ỹ

′,−y′n/j) on B− := B(y, r′)∩{y′n < 0} with well-chosen coefficients cj ’s.

Theorem 3.18 (Trace theorem). Let U ⊂ Rn be open, bounded, with C1 boundary, and let
p ∈ [1,∞). There exists a linear operator, the trace operator,

T : W 1,p(U) −→ Lp(∂U)

that is bounded, i.e.

∥Tu∥Lp(∂U) ≤ C ∥u∥W 1,p(U) for all u ∈ W 1,p(U),

where C = C(n, p,U) > 0. Moreover, for every u ∈ W 1,p(U) ∩ C∞(U) one has Tu = u|∂U .

Remark 3.19. 1. For u ∈ C∞(U), the trace coincides with the pointwise restriction u|∂U .
By density of C∞(U) in W 1,p(U) (for ∂U being C1), this identifies the trace uniquely.

2. If u ∈ W k,p(U), then traces exist for all derivatives up to order k−1: for each multiindex
α with |α| ≤ k − 1, one can define a bounded operator Tα so that Tα(Dαu) is the trace
of Dαu on ∂U .

3. Zero trace characterisation: u ∈ W 1,p
0 (U) if and only if Tu = 0 in Lp(∂U). Indeed, if

uj ∈ C∞
c (U) with uj → u in W 1,p(U), then T (uj) = 0 and boundedness of T gives

Tu = 0. The converse follows by localisation, flattening the boundary, and a partition
of unity arguments (see Evans, Sec. 5.5, Thm 2).
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4. Sharp regularity (for 1 < p <∞): if s > 1/p, there is, considering fractional derivatives
(cf. Exercise 2.13) a bounded trace T : W s,p(U) −→ W s−1/p,p(∂U), so the loss of
differentiability is 1/p. More generally, for traces onto a C1 submanifold of codimension
m, one requires s > m/p and the loss is m/p.

Proof of Theorem 3.18. The proof follows the same structure as for the extension theorem, i.e.
we construct the trace operator T by a covering argument, reducing locally to the flat case,
using u ∈ C∞(U) and relaxing the latter by density. This reduces the proof to the flat whole
space case (the partition of unity localises).

Let B ⊂ Rn be a ball centered on the hyperplane {xn = 0}, and set B+ = B ∩ {xn > 0}
and Γ = ∂B+ ∩ {xn = 0}. Fix ϕ ∈ C∞

c (B) with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on a smaller ball
B′ ⋐ B. For u ∈ C∞(B+) set w := ϕu and F := |w|pen. Since w vanishes near ∂B, using the
divergence theorem and the Young’s inequality we get

∥u∥pLp(Γ∩B′) =

∫
Γ∩B′

|u|p dσ =

∫
Γ

|w|p dσ = −
∫
∂B+

F · ν dσ =

∫
B+

∇ · F dx =

∫
B+

∂xn(|w|p) dx

=

∫
B+

p |w|p−1 ∂xnw sgn(w) dx ≤
∫
B+

(
(p− 1)|w|p + |∂xnw|p

)
dx

≤ C

∫
B+

(
|ϕu|p + |(∂xnϕ)u+ ϕ ∂xnu|p

)
dx ≤ C

∫
B+

(
|u|p + |∇u|p

)
dx

≤ C ∥u∥pW 1,p(B+) .

By density of C∞(B+) in W 1,p(B+), the estimate extends to all u ∈ W 1,p(B+).

3.6 Sobolev inequalities
The Sobolev inequalities are a collection of inequalities that “trade” integrability of weak
derivatives for classical differentiability. The basic result is the Gagliardo-Nirenberg-Sobolev
inequality (GNS). Before we state and prove it, we need the following (Loomis–Whitney)
lemma.

Lemma 3.20. Let n ≥ 2 and f1, . . . , fn ∈ Ln−1(Rn−1). For x = (x1, . . . , xn) set x̃i =
(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1. Then f(x) :=

∏n
i=1 fi(x̃i) ∈ L1(Rn) and

∥f∥L1(Rn) ≤
n∏

i=1

∥fi∥Ln−1(Rn−1).

Proof. By replacing fi with |fi|, assume fi ≥ 0. For n = 2 we have f(x1, x2) = f1(x2)f2(x1),
hence ∥f∥L1(R2) = ∥f1∥L1(R)∥f2∥L1(R). Assume the claim true in dimension n ≥ 2 and
consider f1, . . . , fn+1 ∈ Ln(Rn). Fix xn+1 ∈ R and write F (·, xn+1) =

∏n
i=1 fi(x̃i) and

f(·, xn+1) = fn+1(x̃n+1)F (·, xn+1). By Hölder on Rn with exponents n and q = n
n−1

,∫
Rn

|f(·, xn+1)| ≤ ∥fn+1∥Ln(Rn) ∥F (·, xn+1)∥Lq(Rn).

Applying the inductive hypothesis in dimension n to gi := fi(·, xn+1)
q ∈ Ln−1(Rn−1) gives

∥F (·, xn+1)∥Lq(Rn) ≤
n∏

i=1

∥fi(·, xn+1)∥Ln(Rn−1).
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Therefore
∫
Rn |f(·, xn+1)| ≤ ∥fn+1∥Ln(Rn)

∏n
i=1 ∥fi(·, xn+1)∥Ln(Rn−1). Integrating in xn+1 and

using Tonelli plus generalized Hölder (with n factors of exponent n), we obtain

∥f∥L1(Rn+1) ≤ ∥fn+1∥Ln(Rn)

n∏
i=1

(∫
R
∥fi(·, xn+1)∥nLn(Rn−1) dxn+1

)1/n
=

n+1∏
i=1

∥fi∥Ln(Rn).

This is the desired estimate with n replaced by n+ 1, completing the induction.

Theorem 3.21 (Gagliardo-Nirenberg-Sobolev inequality). Let n ≥ 2 and p ∈ [1, n). Write
p∗ = np

n−p
(equivalently, 1/p∗ = 1/p− 1/n). Then:

• (Global, Rn) There exists C = C(n, p) > 0 such that

∥u∥Lp∗ (Rn) ≤ C ∥Du∥Lp(Rn) for all u ∈ W 1,p(Rn).

• (Local away from the boundary) If U ⊂ Rn is open and bounded, there exists C =
C(U , n, p) > 0 such that

∥u∥Lp∗ (U) ≤ C ∥Du∥Lp(U) for all u ∈ W 1,p
0 (U).

• (Local up to the boundary) If U ⊂ Rn is open, bounded with C1 boundary, there exists
C = C(U , n, p) > 0 such that

∥u∥Lp∗ (U) ≤ C ∥u∥W 1,p(U) for all u ∈ W 1,p(U).

Remark 3.22. 1. Since p∗ = np
n−p

> p for p < n, the embedding gives a genuine gain of
integrability (evident in the local statements, where the Lp spaces are nested).

2. On Rn, the estimate controls u only modulo additive constants via ∥Du∥Lp ; the assump-
tion u ∈ W 1,p(Rn) (in particular u ∈ Lp) rules out non decaying behaviours.

3. The W 1,p
0 (U) case, in particular gives ∥u∥Lp(U) ≤ C ∥Du∥Lp(U), which is an instance of

Poincaré inequality.
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LECTURE 14
Proof of Theorem 3.21. We first prove the global estimate on Rn assuming u ∈ C1

c (Rn).
Step 1: the case p = 1. Fix i ∈ {1, . . . , n}. By the Fundamental Theorem of Calculus,

u(x) =

∫ xi

−∞
∂xi
u(x1, . . . , yi, . . . , xn) dyi,

so that |u(x)| ≤ gi(x̃i) where

gi(x̃i) :=

∫ +∞

−∞

∣∣∂xi
u(x1, . . . , yi, . . . , xn)

∣∣ dyi, x̃i := (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1.

Let f := |u| n
n−1 and fi := g

1
n−1

i . Then f(x) ≤∏n
i=1 fi(x̃i), and by Lemma 3.20,

∥f∥L1(Rn) ≤
n∏

i=1

∥fi∥Ln−1(Rn−1).

Therefore,

∥u∥
n

n−1

L
n

n−1 (Rn)
= ∥f∥L1(Rn) ≤

n∏
i=1

∥gi∥
1

n−1

L1(Rn−1) =
n∏

i=1

∥∂xi
u∥

1
n−1

L1(Rn) ≤ Cn ∥∇u∥
n

n−1

L1(Rn)

for some Cn depending only on the dimension n. This gives

∥u∥
L

n
n−1 (Rn)

≤ Cn ∥∇u∥L1(Rn) ∀u ∈ C1
c (Rn).

Step 2: the case p ∈ (1, n). Let γ :=
p(n− 1)

n− p
> 1 and set v := |u|γ . Since u ∈ C1

c (Rn) and

γ > 1, we have v ∈ C1
c (Rn) with ∇v = γ|u|γ−1 sign(u)∇u. Applying the p = 1 estimate

from Step 1 to v gives

∥u∥
p(n−1)
n−p

L
pn
n−p (Rn)

= ∥v∥
L

n
n−1 (Rn)

≤ Cn ∥∇v∥L1(Rn) = Cnγ

∫
Rn

|u|γ−1|∇u| dx,

By Hölder with exponents
(

p
p−1

, p
)

and using (γ − 1) p
p−1

= np
n−p

,∫
Rn

|u|γ−1|∇u| ≤
∥∥|u|γ−1

∥∥
L

p
p−1 (Rn)

∥∇u∥Lp(Rn) = ∥u∥
n(p−1)
n−p

L
pn
n−p (Rn)

∥∇u∥Lp(Rn).

We obtain
∥u∥

p(n−1)
n−p

L
pn
n−p (Rn)

≤ Cnγ ∥u∥
n(p−1)
n−p

L
pn
n−p (Rn)

∥∇u∥Lp(Rn).

If ∥u∥
L

pn
n−p

= 0 there is nothing to prove; otherwise divide both sides by ∥u∥
n(p−1)
n−p

L
pn
n−p

and get

∥u∥Lp∗ (Rn) ≤ Cn,p ∥∇u∥Lp(Rn), p∗ =
np

n− p
, ∀u ∈ C1

c (Rn).

Step 3: density and local versions. Since C∞
c (Rn) is dense in W 1,p(Rn), the global inequality

extends to all u ∈ W 1,p(Rn). Indeed, we can approximate by truncation and mollification: take
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uj := (ηRj
u) ∗ ρεj with cut-off ηRj

∈ C∞
c , ηRj

≡ 1 on B(0, Rj), Rj → ∞, and ρεj a mollifier
with εj → 0; then uj → u in W 1,p(Rn).

Local away from the boundary. If u ∈ C∞
c (U), let ũ be its zero extension to Rn. Then

ũ ∈ W 1,p(Rn) and ∥ũ∥Lp∗ (Rn) = ∥u∥Lp∗ (U), ∥∇ũ∥Lp(Rn) = ∥∇u∥Lp(U). Applying the global
inequality to ũ yields ∥u∥Lp∗ (U) ≤ Cn,p∥∇u∥Lp(U) for all u ∈ C∞

c (U), and by density ofC∞
c (U)

in W 1,p
0 (U) the estimate extends to every u ∈ W 1,p

0 (U).
Local up to the boundary. Thanks to the assumptions on U , we can apply Theorem 3.15

giving the extension operator E. Applying the global inequality to Eu we obtain

∥u∥Lp∗ (U) ≤ ∥Eu∥Lp∗ (Rn) ≤ Cn,p ∥Eu∥W 1,p(Rn) ≤ Cn,pCext ∥u∥W 1,p(U).

Remark 3.23 (Critical case p = n). At p = n (and n ≥ 2) one does not get L∞ control (as
expected since p∗(p) → ∞ as p → n): e.g. u(x) = log log

(
e
|x|

)
on B(0, e−1) ⊂ Rn lies

in W 1,nB(0, e−1) \ L∞B(0, e−1). It holds the endpoint embedding W 1,n(U) into the space
BMO(U) of functions of bounded mean oscillations, a space strictly between

⋂
q<∞ Lq and

L∞.
Remark 3.24 (1D case). The case n = 1 is excluded since we need p ≥ 1 (to work with Banach
spaces) but p∗ = np

n−p
is finite only when p < n. In 1D, we get an L∞ bound: for I finite

interval and u ∈ W 1,p
0 (I) we have ∥u∥L∞(I) ≤ CI,p∥Du∥Lp(I). On R, if u ∈ W 1,1(R) then

∥u∥L∞(R) ≤ ∥Du∥L1(R) (see the book by Brezis for more details on the 1D case).
With higher integrability of the function and its derivatives, specifically when p > n we

gain not only greater integrability and the expected boundedness but also pointwise regularity,
as the following theorem shows.

Theorem 3.25 (Morrey inequality). Let p > n and γ := 1− n
p
.

• (Global, Rn) There exists a constant C = C(n, p) > 0 such that for every u ∈ C∞
c (Rn),

∥u∥C0,γ(Rn) ≤ C ∥u∥W 1,p(Rn).

Thus, every u ∈ W 1,p(Rn) has a representative in C0,γ(Rn) (i.e., there is a version of u,
equal to u almost everywhere, that belongs to this Hölder space).

• (Local version up to the boundary) If U ⊂ Rn is bounded with C1 boundary, then there
exists a constant C = C(U , n, p) > 0 such that for every u ∈ C∞(U),

∥u∥C0,γ(U) ≤ C ∥u∥W 1,p(U).

Thus, every u ∈ W 1,p(U) has a representative in C0,γ(U).
Proof. Global case. By density, prove it for u ∈ C∞

c (Rn). For x ∈ Rn, r > 0, and any center
m with x ∈ Br(m), set the average ūm,r := 1

|Br|

∫
Br(m)

u. By the Fundamental Theorem of
Calculus,

u(x)− u(z) =

∫ 1

0

∇u
(
x+ t(z − x)

)
· (x− z) dt.

Averaging over z ∈ Br(m), using Fubini and |z − x| ≤ 2r

|u(x)− ūm,r| ≤
1

|Br|

∫
Br(m)

∫ 1

0

∣∣∇u(x+ t(z − x)
)∣∣ |z − x| dt dz

≤ 2r

|Br|

∫ 1

0

∫
Br(m)

∣∣∇u(x+ t(z − x)
)∣∣ dz dt.
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With the change of variables y = x+ t(z − x) we get

x+ t
(
Br(m)− x

)
= Btr

(
x+ t(m− x)

)
⊂ Br(m),

hence, using Hölder with 1 = 1
p
+
(
1− 1

p

)
,

|u(x)− ūm,r| ≤
2r

|Br|

∫ 1

0

t−n

∫
Btr(x+t(m−x))

|∇u(y)| dy dt

≤ 2r

|Br|

∫ 1

0

t−n |Btr|1−
1
p ∥∇u∥Lp(Br(m)) dt

= 2r |Br|−
1
p

(∫ 1

0

t−
n
p dt

)
∥∇u∥Lp(Br(m))

≤ C r1−
n
p ∥∇u∥Lp(Br(m)),

since p > n. Now take m = x+y
2

and r = 2|x− y|, so x, y ∈ Br(m):

|u(x)−u(y)| ≤ |u(x)−ūm,r|+|u(y)−ūm,r| ≤ C r1−
n
p ∥∇u∥Lp(Br(m)) ≤ C |x−y|1−n

p ∥∇u∥Lp(Rn).

Also, we get the L∞ bound. Set m = x and r = 1, using the estimate above and Hölder

|u(x)| ≤ |u(x)− ūx,r|+ |ūx,r| ≤ C ∥u∥W 1,p(Rn)

This gives the claim for C∞
c (Rn), hence for W 1,p(Rn) by density.

Local case. From the assumptions on U Theorem 3.15 gives E : W 1,p(U) → W 1,p(Rn) with
Eu|U = u and ∥Eu∥W 1,p(Rn) ≤ Cext∥u∥W 1,p(U). Letting u ∈ C∞(U), we apply the global case
to Eu:

∥u∥C0,γ(U) ≤ ∥Eu∥C0,γ(Rn) ≤ C ∥Eu∥W 1,p(Rn) ≤ C Cext∥u∥W 1,p(U).

By density of C∞(U) in W 1,p(U) we get the local statement.

Remark 3.26. By applying the previous inequalities to u and its derivatives, one establishes
higher order versions showing that functions in W k,p belongs to some Lq and/or Cℓ,γ spaces.
These are collectively the “Sobolev inequalities”.

Example 3.27. If u ∈ W 2,2(U) for U ⊂ R3 we have u,∇u ∈ W 1,2(U), thus Gagliardo-
Nirenberg-Sobolev inequality gives u,∇u ∈ L6(U) and hence u ∈ W 1,6(U). Applying Morrey
inequality we get u ∈ C0,1/2(U).
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3.7 Compactness in Sobolev spaces
Theorem 3.28 (Rellich–Kondrachov compactness theorem). Let U ⊂ Rn be a bounded open
set with C1 boundary and let p ∈ [1, n). Set p∗ = np

n−p
. Then for every q ∈ [1, p∗) the embedding

W 1,p(U) ↪→ Lq(U) is compact; i.e., bounded sets in W 1,p(U) are relatively compact in Lq(U) (i.e.
the closure is a compact subset of Lq(U)).

In a metric space, relative compactness can be checked through sequences. Thus, rephrasing
the statement: every bounded sequence inW 1,p(U) has a subsequence that converges in Lq(U).
Remark 3.29 (Compact vs. continuous embedding). Compactness implies continuity: if the
inclusion i : W 1,p(U) → Lq(U) is compact but not continuous, then i is unbounded, so there
exist un with ∥un∥W 1,p ≤ 1 and ∥i(un)∥Lq ≥ n. However, compactness means i maps the unit
ball into a relatively compact set, so (i(un)) has a convergent (hence bounded) subsequence, a
contradiction.
Remark 3.30 (Rellich–Kondrachov in practice). On a bounded domain, uniform a priori bounds
in a Sobolev space, for example H1(U), guarantee that from any approximating sequence
we can extract a subsequence that converges in L2(U). This turns uniform estimates on
approximations into actual limits, it reduces existence questions to proving such uniform
bounds. Also, it will be crucial to prove the Fredholm alternative in Chapter 4.

We recall Arzelà–Ascoli Theorem: Let K ⊂ Rn be compact and F ⊂ C(K,R) be uniformly
bounded and equicontinuous. Then F is relatively compact in (C(K), ∥ · ∥∞); equivalently,
every sequence in F admits a uniformly convergent subsequence on K .

Proof of Theorem 3.28. Step 1: Extension. Consider a bounded sequence (uj) in W 1,p(U). From
the extension theorem there exists an extension vj := Euj bounded inW 1,p(Rn) with compact
supports all included in a given bounded open set V with U ⋐ V . Fix also an open set W with
V ⋐ W and set ε0 := dist(V , ∂W) > 0. Given (φε) standard mollifiers, define vεj := φε ∗ vj .
Then for every 0 < ε < ε0 one has vεj ∈ C∞

c (W) and supp vεj ⊂ W for all j. (Here and below,
all norms are taken on the indicated set; since supp vj ⊂ V , Lp(Rn) and Lp(V)-norms of vj
coincide.)
Step 2. Fix 1 ≤ q < p∗. We claim that

sup
j

∥vεj − vj∥Lq(V) −−→
ε→0

0.

By density, assume vj ∈ C∞
c (V); by Step 1, supp vj ⊂ V and supj ∥∇vj∥Lp(V) < ∞. With a

standard mollifier (φε),

|vεj (x)−vj(x)| =
∣∣∣∫

B(0,1)

φ(y)
(
vj(x−εy)−vj(x)

)
dy
∣∣∣ ≤ ε

∫
B(0,1)

φ(y)

∫ 1

0

|∇vj(x−εty)| dt dy.

Integrating in x over V and using Fubini,

∥vεj − vj∥L1(V) ≤ ε ∥∇vj∥L1(V) ≤ C ε ∥∇vj∥Lp(V),

where the last inequality uses the boundedness of V and Hölder. Interpolating between L1(V)
and Lp∗(V) with Hölder inequality, we have

∥f∥Lq(V) ≤ ∥f∥θL1(V)∥f∥1−θ
Lp∗ (V), with θ =

1
q
− 1

p∗

1− 1
p∗

∈ (0, 1).
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Using the Gagliardo–Nirenberg–Sobolev inequality on Rn (which applies to vεj , vj since they
are compactly supported) and Young’s inequality for convolution (because ∇vεj = φε ∗ ∇vj
and ∥φε∥L1 = 1),

∥vεj − vj∥Lq(V) ≤ ∥vεj − vj∥θL1(V) ∥vεj − vj∥1−θ
Lp∗ (V)

≤ (Cε∥∇vj∥Lp(V))
θ (∥vεj∥Lp∗ + ∥vj∥Lp∗ )1−θ

≤ (Cε∥∇vj∥Lp(V))
θ (C∥∇vεj∥Lp + C∥∇vj∥Lp)1−θ

≤ (Cε∥∇vj∥Lp(V))
θ (C∥∇vj∥Lp(V))

1−θ = C εθ ∥∇vj∥Lp(V).

Since supj ∥∇vj∥Lp(V) <∞, it follows that vεj → vj in Lq(V) uniformly in j as ε→ 0.
Step 3. Compactness by Arzelà–Ascoli. Fix ε ∈ (0, ε0). For each such fixed ε > 0, (vεj ) is
equibounded and equicontinuous on W :

∥vεj∥L∞(W) ≤ ∥φε∥L∞∥vj∥L1(V), ∥∇vεj∥L∞(W) ≤ ∥∇φε∥L∞∥vj∥L1(V),

and ∥vj∥L1(V) ≤ C ∥vj∥Lp(V). By Arzelà–Ascoli on the compact set W , for this fixed ε there is
a subsequence (vεjk) converging uniformly on W ; hence, for any δ > 0 and k, ℓ large enough,

∥vεjk − vεjℓ∥Lq(V) < δ/3.

Choose ε ∈ (0, ε0) so that, by Step 2,

sup
j

∥vεj − vj∥Lq(V) < δ/3.

Then for k, ℓ large,

∥vjk − vjℓ∥Lq(V) ≤ ∥vjk − vεjk∥Lq(V) + ∥vεjk − vεjℓ∥Lq(V) + ∥vεjℓ − vjℓ∥Lq(V) < δ,

so (vjk) is Cauchy in Lq(V), hence convergent in Lq(V) to some v ∈ Lq(V). Finally, since
vj = Euj and vj = uj a.e. on U , by restriction we obtain

ujk = vjk
∣∣
U −→ v

∣∣
U in Lq(U).

Remark 3.31 (Failure at the critical exponent). The embedding is not compact at the critical
exponent p∗ = np

n−p
for 1 ≤ p < n. To see it, take any nonzero u ∈ C∞

c (B(0, r)) with
B(0, r) ⊂ U and define vε(x) := ε−n/p∗u(x/ε) for 0 < ε ≤ 1. Then supp vε ⊂ B(0, εr) ⊂ U
and ∥∇vε∥Lp = ∥∇u∥Lp , ∥vε∥Lp∗ = ∥u∥Lp∗ > 0. Hence {vε} is bounded in W 1,p(U) and has a
constant ∥vε∥Lp∗ > 0, while vε(x) → 0 for every fixed x ̸= 0, so vε → 0 almost everywhere. If
the embedding W 1,p(U) → Lp∗(U) were compact, some subsequence would converge in Lp∗ .
Passing, if necessary, to a subsequence of that subsequence, we may assume ∥vεk∥Lp∗ → 0,
contradicting ∥vεk∥Lp∗ = ∥u∥Lp∗ > 0.
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4 Ellipticity
We always consider U ⊂ Rn open bounded and with C1 boundary in this chapter.

4.1 The notion of ellipticity
At the most general level, we have seen in Chapter 2 that ellipticity corresponds for a linear
operator to the absence of characteristic surfaces, i.e. σd(x, ξ) ̸= 0 for all x ∈ U and ξ ∈
Rn \ {0}. We now write it concretely for second-order linear operators. Such operators L can
be given in two forms, given aij, bi, b̃i : U → R,

Lu = −
n∑

i=1

∂xi

(
n∑

j=1

aij∂xj
u

)
︸ ︷︷ ︸

−∇·(ADu)

+
n∑

i=1

bi∂xi
u+ cu (divergence form)

Lu = −
n∑

i,j=1

aij ∂
2
xixj

u+
n∑

i=1

b̃i∂xi
u+ cu (non-divergence form)

One can navigate between divergence-form and non-divergence form whenever aij is differen-
tiable by b̃i = bi −

∑n
j=1 ∂xj

aji. Note also, supposing ∂xi
∂xj

u = ∂xj
∂xi
u, we can assume that

the matrix A with entries (aij) is symmetric by modifying if necessary the first order term: if
we decompose aij = asij + aasij in symmetric and anti-symmetric part, where asij :=

aij+aji
2

and
aasij :=

aij−aji
2

, we obtain

n∑
i=1

∂xi

(
n∑

j=1

aij∂xj
u

)
=

n∑
i=1

∂xi

(
n∑

j=1

asij∂xj
u

)
,

n∑
i,j=1

aij ∂
2
xixj

u =
n∑

i,j=1

asij ∂
2
xixj

u.

Definition 4.1. We say that L is elliptic if
∑n

i,j=1 a
ij(x) ξiξj > 0 for all x ∈ U and ξ ∈

Rn \ {0}, and we say that L is uniformly elliptic (also called strictly elliptic) if for some
θ > 0 we have

∑n
i,j=1 a

ij(x) ξiξj > θ|ξ|2 for all x ∈ U and ξ ∈ Rn \ {0}.

The goal of the chapter is to study the equation Lu = f for some source term f , in
bounded domains U , and for some uniformly elliptic second-order linear operator L. As we
have previously noted with Hadamard’s example, the Cauchy Problem for elliptic operators,
even if we can apply the Cauchy-Kovalevskaya theorem to solve it locally and uniquely in
the analytic class, is ill-posed in the Ck class (and also, with the same mechanism, in Sobolev
spaces). Thus, we relax the data constraints and only impose a boundary condition on u,
namely u|∂U will be given. We will define a setting where we can construct a unique solution
depending continuously on the data, and then we will consider the regularity theory of such
solutions.
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4.2 Solving the Dirichlet problem (coercive case)
Consider the boundary value problem (the Dirichlet problem){

Lu = f in U ,
u = 0 on ∂U , (4.1)

where L is the divergence form operator

Lu = −
n∑

i,j=1

∂xi

(
aij ∂xj

u
)
+

n∑
i=1

bi ∂xi
u+ c u,

with bounded measurable coefficients. If u ∈ C2(U) solves (4.1), then for any v ∈ C1(U) with
v|∂U = 0, integrating by parts (the boundary terms vanish) gives

⟨f, v⟩L2(U) =

∫
U
f v =

∫
U

[
n∑

i,j=1

aij (∂xj
u)(∂xi

v) +
n∑

i=1

bi (∂xi
u) v + c u v

]
=: B[u, v]. (4.2)

Conversely, if u ∈ C2(U) with u|∂U = 0 satisfies (4.2), then for every v ∈ C∞
c (U) another

integration by parts yields ⟨Lu− f, v⟩L2(U) = 0, hence, by the fundamental lemma of calculus
of variations, Lu = f in U . Note that (4.2) makes sense for u, v ∈ H1

0 (U); the boundary
condition is encoded by the trace.

Definition 4.2. Let f ∈ L2(U). We say that u ∈ H1
0 (U) is a weak solution to (4.1) if

∀v ∈ H1
0 (U), B[u, v] = ⟨f, v⟩, (4.3)

where B is defined by (4.2).

Proposition 4.3. Assume f ∈ L2(U) and aij, bi, c ∈ L∞(U). Let u ∈ C2(U) ∩H1
0 (U). Then u

is a weak solution to (4.1) if and only if

Lu = f a.e. in U , u = 0 on ∂U .
If, in addition, aij ∈ C1(U) and bi, c, f ∈ C(U), then the identity Lu = f holds pointwise in U ,
so u is a classical solution.

Remark 4.4. This expresses the minimal requirement for a generalization of the notion of
solution: it agrees with the classical one whenever sufficient regularity is available.

Proof of Proposition 4.3. (⇐) Assume Lu = f a.e. in U and u = 0 on ∂U . For v ∈ C∞
c (U),

multiplying the PDE by v and integrating by parts (no boundary term) gives∫
U
f v =

∫
U

[
n∑

i,j=1

aij (∂xj
u)(∂xi

v) +
n∑

i=1

bi (∂xi
u) v + c u v

]
= B[u, v].

By density of C∞
c (U) in H1

0 (U) this extends to all v ∈ H1
0 (U), hence u is a weak solution.

(⇒) Assume u is a weak solution: for all v ∈ H1
0 (U),

∫
U f v = B[u, v]. For v ∈ C∞

c (U), by
integration by parts we get

∫
U(Lu − f) v = 0 for all v ∈ C∞

c (U), thus by the fundamental
lemma of calculus of variation we get Lu = f in U almost everywhere. Finally, u ∈ H1

0 (U)
has trace 0 in L2(∂U); since u ∈ C(U), u ≡ 0 on ∂U pointwise.
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The main tool for existence and uniqueness is the following generalization of Riesz repre-
sentation theorem.

Theorem 4.5 (Lax–Milgram). Let H be a real Hilbert space with inner product (·, ·), and
B : H ×H → R a bilinear form that is bounded and coercive:

|B[u, v]| ≤ α ∥u∥H∥v∥H , B[u, u] ≥ β ∥u∥2H for some α, β > 0.

Then for every F ∈ H∗ there exists a unique u ∈ H such that B[u, ·] = F (·), and

∥u∥H ≤ β−1 ∥F∥H∗ , where ∥F∥H∗ := sup
v∈H\{0}

|F (v)|
∥v∥H

We first apply the theorem to the Dirichlet problem, then prove it.
Remark 4.6 (An equivalent norm on H1

0 ). We have proved as special case of Gagliardo-
Nirenberg-Sobolev inequality that

∥u∥L2(U) ≤ CP ∥∇u∥L2(U) ∀u ∈ H1
0 (U).

In particular, if we set
∥u∥H1

0 (U) := ∥∇u∥L2(U),

then ∥ · ∥H1(U) and ∥ · ∥H1
0 (U) are equivalent norms on H1

0 (U).
Corollary 4.7. Assume L is in divergence form, uniform elliptic, with bounded measurable
coefficients aij , with bi = 0, c ≥ 0. Then Lax–Milgram applies with H = H1

0 (U), B as in (4.2),
and F (v) =

∫
U f v for f ∈ L2(U). Consequently, there exists a unique u ∈ H1

0 (U) solving (4.3),
and for some C > 0

∥u∥H1
0 (U) ≤ C ∥f∥L2(U).

Proof of Corollary 4.7. (1) Boundedness of B. By the boundedness of the coefficients and
Cauchy–Schwarz, (here the controlling constant C can vary)

|B[u, v]| ≤ C∥∇u∥L2 ∥∇v∥L2 + c∥u∥L2 ∥v∥L2 ≤ C∥∇u∥L2 ∥∇v∥L2 = C∥u∥H1
0 (U) ∥v∥H1

0 (U).

(2) Coercivity. With bi = 0 and c ≥ 0,

B[u, u] =

∫
U

n∑
i,j=1

aij (∂xj
u)(∂xi

u) +

∫
U
c u2 ≥ θ

∫
U
|∇u|2 = θ ∥u∥2H1

0 (U).

(3) Boundedness of F . For v ∈ H1
0 (U),

|F (v)| =
∣∣∣ ∫

U
f v
∣∣∣ ≤ ∥f∥L2(U) ∥v∥L2(U) ≲ ∥f∥L2(U) ∥∇v∥L2(U) = ∥f∥L2(U) ∥v∥H1

0 (U).

The claim follows from Theorem 4.5, with ∥u∥H1
0
≤ θ−1 ∥F∥(H1

0 )
∗ ≤ θ−1 ∥f∥L2(U).

We recall the following basic theorem in the theory of Hilbert spaces.

Theorem 4.8 (Riesz representation theorem). Let H be a Hilbert space with inner product (·, ·).
For every continuous linear functional F ∈ H∗ there exists a unique w ∈ H such that

F (v) = (w, v) ∀ v ∈ H,

and ∥F∥H∗ = ∥w∥H .
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Proof of Theorem 4.5. Fix u ∈ H , then functional v 7→ B[u, v] is linear and bounded, hence by
Riesz there is a unique Au ∈ H with

B[u, v] = (Au, v) ∀ v ∈ H.

This defines a bounded linear operator A : H → H since, letting ∥·∥ = ∥·∥H for simplicity,

∥Au∥2 = (Au,Au) = B[u,Au] ≤ α ∥u∥ ∥Au∥ ⇒ ∥Au∥ ≤ α ∥u∥.

Coercivity gives

β ∥u∥2 ≤ B[u, u] = (Au, u) ≤ ∥Au∥ ∥u∥ ⇒ ∥Au∥ ≥ β ∥u∥,

so A is injective and has closed range, indeed if (Aun) is Cauchy, then (un) is Cauchy and
converges to some u, hence by continuity of A we have Aun → Au. Moreover, if v ⊥ Ran(A)
then (Au, v) = 0 for all u, so in particular B[v, v] = (Av, v) = 0, and coercivity forces
v = 0. Recall that for any subspace M ⊂ H we have the decomposition H = M ⊕ (M)⊥,
where S⊥ is the orthogonal subspace of S. Thus Ran(A) is closed and has trivial orthogonal,
hence Ran(A) = H and A is bijective. From ∥Au∥ ≥ β∥u∥ we get ∥A−1∥H∗ ≤ β−1. Given
F ∈ H∗, let w ∈ H be its Riesz representative, F (v) = (w, v) for all v ∈ H . The unique
solution to B[u, v] = F (v) is u = A−1w, indeed F (v) = (w, v) = (Au, v) = B[u, v], and
∥u∥ ≤ ∥A−1∥ ∥w∥ = β−1 ∥F∥H∗ , using Riesz again.

Remark 4.9. When B is symmetric, the weak formulation (4.3) is the Euler–Lagrange equation
of the strictly convex functional J(u) := 1

2
B[u, u] − F (u) on H1

0 (U). Also, in this case the
proof of Lax-Milgram is much easier: ⟨·, ·⟩B := B[·, ·] is an equivalent inner product for H ,
thus we can apply Riesz to (H, ⟨·, ·⟩B) to immediately get Lax-Milgram for symmetric.
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4.3 Solving the Dirichlet problem (degenerate coercive case)
We consider L in divergence form, uniformly elliptic and with aij, bi, c ∈ L∞(U). The associ-
ated bilinear form

B[u, v] =

∫
U

( n∑
i,j=1

aij ∂xi
u ∂xj

v +
n∑

i=1

bi ∂xi
u v + c u v

)
dx

satisfies the energy estimate27

∀u ∈ H1
0 (U), B[u, u] ≥ β∥u∥2H1

0 (U) − γ∥u∥2L2(U) (4.4)

for some β > 0 and γ ≥ 0 (the case of Corollary 4.7 corresponds to γ = 0). Indeed, uniform
ellipticity (of the symmetric part of A = (aij)) gives (using Cauchy-Schwarz and Young’s
inequality)

B[u, u] =

∫
U

n∑
i,j=1

aij ∂xi
u ∂xj

u+
n∑

i=1

∫
U
bi ∂xi

uu+

∫
U
c u2 (4.5)

≥ θ∥∇u∥2L2(U) − b̄
√
n ∥∇u∥L2(U)∥u∥L2(U) − c̄∥u∥2L2(U)

≥ θ
2
∥∇u∥2L2(U) −

(
nb̄2

2θ
+ c̄
)
∥u∥2L2(U),

with b̄ := maxi ∥bi∥L∞ and c̄ := ∥c∥L∞ . Since implies (4.4) with β = θ
2

and γ = nb̄2

2θ
+ c̄.

By (4.4), Lu+ µu = f has a unique solution u ∈ H1
0 (U) for every µ ≥ γ, since the weak

form
Bµ[u, v] := B[u, v] + µ(u, v)L2(U)

satisfies Lax–Milgram.
To solve the problem in the degenerate coercive case, that is when B[u, v] is not coercive

but, as seen above, we still have (4.5), we will suitably reformulate it in terms of an abstract
problem of the form (Id −K)u = h in the Hilbert space L2, with K : H → H compact, that
means the following.

Definition 4.10. Let H be a Hilbert space. A bounded operator K : H → H is compact if
every bounded sequence (um) has a subsequence (Kumk

) that converges in H .

Remark 4.11. If U is bounded with C1 boundary and T : L2(U) → H1
0 (U) is bounded, then

the composition K := ι ◦ T : L2(U) → L2(U) is compact, where ι : H1
0 (U) ↪→ L2(U) is the

(Rellich–Kondrachov) compact embedding.

Definition 4.12 (Adjoint operator). Let H be a Hilbert space and K : H → H a bounded
linear operator. The adjoint of K is the unique bounded linear operator K∗ : H → H such
that

⟨Kx, y⟩ = ⟨x,K∗y⟩ for all x, y ∈ H.

27For elliptic operators, the quadratic form u 7→ B[u, u] plays the role of an energy (compare B[u, u] =∫
U |∇u|2 for L = −∆). The inequality (4.4) (in literature also called Gårding inequality) shows that this energy

controls the H1
0–norm (up to lower-order L2 terms), hence the name “energy estimate”.
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Remark 4.13. If K is compact than K∗ is compact as well (check it).
The main property that we will use is that operators of the form Id−K , with K compact,

are “almost invertible”: their kernel and cokernel H \ Im (Id − K) are finite dimensional.
More precisely, we have the following theorem.

Theorem 4.14 (Fredholm alternative for compact operators). Let H be a real Hilbert space
and K : H → H a compact operator. Then

(i) Ker (Id −K) is finite dimensional;
(ii) Im(Id −K) is closed;

(iii) Im(Id −K) = Ker (Id −K∗)⊥;
(iv) Ker (Id −K) = {0} if and only if Im(Id −K) = H ;
(v) dimKer (Id −K) = dimKer (Id −K∗).

Remark 4.15. This motivates the notion of a Fredholm operator: a bounded linear map T : X →
Y is Fredholm if KerT and Y/ ImT are finite dimensional and ImT is closed; its “Fredholm
index” is defined as indT := dimKerT − codim ImT . For T = Id −K with K compact one
always has indT = 0.

Definition 4.16 (Adjoint of L). On L2(U) we define the (formal) adjoint L∗ of L by

(Lu, v)L2(U) = B[u, v] = (u, L∗v)L2(U) for all u, v ∈ C∞
c (U).

For

Lu = −
n∑

i,j=1

∂i
(
aij(x) ∂ju

)
+

n∑
i=1

bi(x) ∂iu+ c(x)u,

corresponds to

L∗v = −
n∑

i,j=1

∂j
(
aij(x) ∂iv

)
−

n∑
i=1

∂i
(
bi(x) v

)
+ c(x) v.

We now reformulate the Dirichlet problem in terms of (Id −K)u = h and apply the previous
theorem.

Corollary 4.17 (Fredholm alternative, divergence form). Let U ⊂ Rn be bounded with C1

boundary. Assume L is a divergence-form, uniformly elliptic operator with bounded coefficients,
and let f ∈ L2(U). Consider {

Lu = f in U ,
u = 0 on ∂U .

Let L∗ be the formal adjoint of L (as in the definition above). Exactly one of the following holds:
1. There is a unique weak solution u ∈ H1

0 (U).
2. The homogeneous problem has a nontrivial solution. Writing

N := {u ∈ H1
0 (U) : Lu = 0}, N∗ := {v ∈ H1

0 (U) : L∗v = 0},

we have dimN = dimN∗ <∞, and Lu = f is solvable if and only if∫
U
f ϕ dx = 0 for all ϕ ∈ N∗ (i.e. f ⊥ N∗ in L2).

When solvable, the solution set is the affine space u+ N for any particular solution u.
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Remark 4.18. The statement resembles the resolution of the matrix equation Ax = b.

Proof of Corollary 4.17. Let B[ · , · ] be the bilinear form of L on H1
0 (U) and let ( · , · ) denote

the L2(U)-inner product. By the energy estimate

B[u, u] + µ ∥u∥2L2 ≥ β∥u∥2H1
0

(u ∈ H1
0 (U))

for some fixed µ > 0 (referring to (4.5) take µ ≥ γ), Lax–Milgram gives, for every g ∈ L2(U),
a unique w ∈ H1

0 (U) solving

B[w, ϕ] + µ (w, ϕ) = (g, ϕ) ∀ϕ ∈ H1
0 (U),

with ∥w∥H1
0
≤ β−1∥g∥L2 . Define the bounded “resolvent”

Rµ : L2(U) → H1
0 (U), Rµg = w,

and let i : H1
0 (U) ↪→ L2(U) be the compact Sobolev embedding (Rellich–Kondrachov). Set

K := µ i ◦Rµ : L2(U) → L2(U).

Then, by Remark 4.11, K is compact on H := L2(U).
Step 1: Reformulation The Dirichlet problem Lu = f in H1

0 (U) rewrites as

B[u, ϕ] = (f, ϕ) ∀ϕ ∈ H1
0 (U).

We claim that for u ∈ L2(U)

(Id −K)u = µ−1Kf if and only if u ∈ H1
0 (U) and B[u, ·] = (f, ·) ,

namely u is a weak solution of Lu = f .
Indeed, if (Id −K)u = µ−1Kf , then u = K

(
u + µ−1f

)
= µ iRµ

(
u + µ−1f

)
, so u ∈ i(H1

0 )
and hence u ∈ H1

0 (U). Put z := Rµ

(
u+ µ−1f

)
∈ H1

0 . By definition of Rµ,

B[z, ϕ] + µ (z, ϕ) = (u+ µ−1f, ϕ) ∀ϕ ∈ H1
0 (U).

Since u = µ iz, we have (u, ϕ) = µ (z, ϕ), hence B[z, ϕ] = µ−1(f, ϕ) and therefore B[u, ϕ] =
(f, ϕ) for all ϕ.
Conversely, if u ∈ H1

0 and B[u, ϕ] = (f, ϕ), then B[u, ϕ] + µ(u, ϕ) = (f + µu, ϕ), so by the
definition of Rµ, u = Rµ(f +µu). Applying i and multiplying by µ, µ i(Rµ(f +µu)) = µ i(u),
i.e. K(f + µu) = µu, which is equivalent to (Id −K)u = µ−1Kf .

Step 3: Apply Theorem 4.14. If u ∈ Ker (Id −K), then by Step 1 with f = 0, u ∈ H1
0 (U)

and B[u, ·] = 0, i.e. u is a homogeneous weak solution: Ker (Id − K) = N. Likewise,
Ker (Id −K∗) = N∗, the space of homogeneous weak solutions of the adjoint problem.
By Theorem 4.14 applied to K on H = L2(U):

• If N = Ker (Id −K) = {0}, then (by (iv)) Im (Id −K) = H , so (Id −K)u = µ−1Kf
has a unique solution u ∈ L2. By Step 1 this is the unique weak solution u ∈ H1

0 (U) of
Lu = f .

• Otherwise, N = Ker (Id −K) ̸= {0} and by (iii)

Im (Id −K) = Ker (Id −K∗)⊥ = (N∗)⊥.
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Hence (Id −K)u = µ−1Kf is solvable if and only if Kf ⊥ N∗ in L2(U). But for every
v ∈ N∗ = Ker (Id −K∗) we have K∗v = v, so

(Kf, v) = (f,K∗v) = (f, v),

and therefore Kf ⊥ N∗ if and only if f ⊥ N∗. Thus Lu = f is solvable if and only if∫
U
f ϕ dx = 0 for all ϕ ∈ N∗. Finally, by (v), dimN = dimN∗ <∞, and the solution set

is the affine space u+ N.
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LECTURE 18
Remark 4.19. The Fredholm alternative implies in particular that for the Dirichlet problem
above the following two statements are equivalent:

(a) for every f ∈ L2(U) there exists at least one weak solution u ∈ H1
0 (U);

(b) for every f ∈ L2(U) there exists at most one weak solution u ∈ H1
0 (U).

Indeed, (b) is equivalent to N = Ker (Id − K) = {0}. By Theorem 4.14 this implies N∗ =
Ker (Id −K∗) = {0} and hence Im (Id −K) = Ker (Id −K∗)⊥ = H = L2(U), which is (a).
Conversely, (a) says Im (Id−K) = H , so Ker (Id−K∗) = {0} and then N = Ker (Id−K) =
{0} by dimN = dimN∗, giving (b).
This is the infinite dimensional analogue of the fact that a linear map between finite-dimensional
spaces of the same dimension is injective if and only if it is surjective.

As for the matrix equation Ax = b, it is crucial to understand the directions that A only
stretches (eigenvectors) and the corresponding factors (eigenvalues) λ which may be complex.
By analogy, for our elliptic operator L we are led to complexify (to not missing eigenvalues,
using that C is an algebraically closed field) and look for λ ∈ C such that the operator L− λI
is not invertible.
Remark 4.20 (Complexification). We complexify and look at the Dirichlet problem for u, f :
U → C. The L2 and H1

0 complex Hilbert space are defined with the corresponding inner
products

(u, v)L2 =

∫
U
u v dx, (u, v)H1

0
=

∫
U
∇u · ∇v dx.

All previous results and proofs carry over assuming complex uniform ellipticity

ℜ
( n∑

i,j=1

aij(x) ξi ξj

)
≥ θ|ξ|2.

and ℜ(B[·, ·]) ≥ β ∥u∥2L2 replacing coercivity.
We can then shift by λ ∈ C and ask for which λ the problem (L − λ)u = f is uniquely

solvable for all f ∈ L2(U). The set of such λ is the resolvent set, whose complement is the
spectrum Σ of L.

Theorem 4.21 (Spectrum of L). Let L be a divergence-form, uniformly elliptic operator on U
with bounded coefficients aij, bi, c ∈ L∞(U) and consider the Dirichlet condition with u|∂U = 0.
Consider the (weak formulation) of the eigenvalue problem

(L− λ)u = f,

for f ∈ L2(U), u ∈ H1
0 (U) and λ ∈ C. Then:

1. There exists an at most countable set Σ ⊂ C such that for every λ /∈ Σ and every f ∈ L2(U)
there is a unique weak solution u ∈ H1

0 (U).
2. If Σ is infinite, writing Σ = {λk}k≥1, we have |λk| → ∞.
3. For each λ ∈ Σ, λ is an eigenvalue with finite dimensional eigenspace

E(λ) :=
{
u ∈ H1

0 (U) : B[u, ϕ] = λ (u, ϕ)L2 ∀ϕ ∈ H1
0 (U)

}
̸= {0}.

4. If aij = aji, bi = 0, and c is real-valued, then L is self-adjoint with compact resolvent; in
particular

Σ ⊂ ( ess inf
U

c, +∞) ⊂ R.
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Proof of Theorem 4.21. Step 1: Reformulation. Fix µ ≥ γ (where γ is given by the energy
estimate (4.5)) and define Lµ := L+ µI. The shifted form Bµ[u, φ] := B[u, φ] + µ(u, φ)L2 is
coercive on H1

0 (U), so by Lax–Milgram, for each f ∈ L2(U) there exists a unique u ∈ H1
0 (U)

such that
Bµ[u, φ] = (f, φ)L2 ∀φ ∈ H1

0 (U).
This defines a bounded inverse L−1

µ : L2(U) → H1
0 (U). Let i : H1

0 (U) ↪→ L2(U) be the
compact embedding. Then

T := i ◦ L−1
µ : L2(U) → L2(U)

is a compact operator. If u ∈ H1
0 (U) and f ∈ L2(U), the equation (L− λ)u = f is equivalent

to Lµu = (µ+ λ)u+ f. Applying L−1
µ and then i gives

(I − (µ+ λ)T )u = Tf. (4.6)

In particular, any weak solution of (L− λ)u = f lies in H1
0 (U).

Step 2: Eigenvalues and eigenspaces (part (iii)). Let Σ be the set of λ ∈ C for which (L−λ)u = 0
admits a nontrivial weak solution u ∈ H1

0 (U). If λ ∈ Σ, there exists u ̸= 0 with (L− λ)u = 0.
Plugging f = 0 into (4.6) we get

(I − (µ+ λ)T )u = 0.

Thus u is an eigenvector of T with nonzero eigenvalue ν = 1
µ+λ

. Conversely, if Tu = νu with
ν ̸= 0, then inserting in (4.6) with f = 0 gives (I − (µ + λ)T )u = 0 which is equivalent to
(L − λ)u = 0, where λ = ν−1 − µ. Hence λ ∈ Σ if and only if ν = 1/(µ + λ) is a nonzero
eigenvalue of T , and the corresponding eigenspace

E(λ) :=
{
u ∈ H1

0 (U) : B[u, φ] = λ(u, φ)L2 ∀φ ∈ H1
0 (U)

}
is exactly the eigenspace of T for ν. Since T is compact on the Hilbert space L2(U), every
nonzero eigenspace of T is finite-dimensional. Thus each λ ∈ Σ has a finite-dimensional
eigenspace E(λ), which proves part (iii).
Assume, for some M > 0, that Σ ∩ B(0,M) is infinite, and let (λk)k≥1 ⊂ Σ ∩ B(0,M) be
pairwise distinct. For each k choose uk ∈ H1

0 (U)\{0} such that (L−λk)uk = 0 and normalize
so that ∥uk∥L2 = 1. As in Step 2, uk is an eigenvector of the compact operator T = i ◦ L−1

µ

with eigenvalue
νk :=

1

µ+ λk
.

The eigenvalues νk are pairwise distinct and satisfy

|νk| =
1

|µ+ λk|
≥ 1

µ+ |λk|
≥ 1

µ+M
=: δ > 0.

Let
X := span{uk : k ≥ 1} ⊂ L2(U).

Since the uk are linearly independent, X is infinite-dimensional. Moreover T (X) ⊂ X , so
S := T |X : X → X is a compact operator (on the Hilbert space X).
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We claim that S is invertible and that its inverse is bounded with ∥S−1∥ ≤ 1/δ. Indeed,
every x ∈ X can be written (in the sense of finite sums, and then by density) as x =

∑N
k=1 ckuk

we we get

Sx = Tx =
N∑
k=1

ckνkuk.

Thus S acts diagonally in the basis {uk}, with Suk = νkuk. Since each νk ̸= 0, S is injective
and its range contains each uk (because uk = ν−1

k Suk), hence RanS contains span{uk}. RanS
is also closed (as ∥Sx∥ ≥ δ ∥x∥), we have RanS = X , so S is bijective. On the finite linear
span of {uk} we have

∥∥S−1
( N∑
k=1

ckνkuk
)∥∥ =

∥∥∥ N∑
k=1

ckuk

∥∥∥ ≤ 1

δ

∥∥∥ N∑
k=1

ckνkuk

∥∥∥,
since |νk| ≥ δ. Hence ∥S−1∥ ≤ 1/δ on this dense subspace, and by continuity S−1 : X → X
is bounded with ∥S−1∥ ≤ 1/δ. Therefore the identity on X factorizes as IX = S−1 ◦ S,
a composition of a bounded operator S−1 with a compact operator S. Thus IX is compact
on X . But X is infinite-dimensional, and the identity operator cannot be compact: take an
orthonormal basis of X as sequence, to see that, even if it is bounded, it does not possess
convergent subsequence. This contradiction shows that Σ ∩B(0,M) must be finite.
Part (iv) Assume now that aij = aji, bi = 0, and c is real-valued. Then we actually have
B[u, u] = B[u, u], thus B[u, u] is real. Then from B[u, u] = λ ∥u∥2 we get that λ is also real.
and from uniform ellipticity we get

λ =
B[u, u]

∥u∥2L2(U)

≥ θ
∥∇u∥2

∥u∥2
+ ess inf

U
c

that, with the Poincaré inequality ∥u∥L2 ≤ CP ∥∇u∥L2 for some CP > 0, proves in particular
Σ ⊂ (ess infU c,∞).

Remark 4.22. 1. From the proof we also obtain the resolvent estimate

∥L−1
µ ∥L2(U)→L2(U) ≤ C(1 + µ)−1

for µ ≥ γ + 1 and some C = C(γ). Indeed, if u = L−1
µ f then testing the weak

formulation with u and using the energy estimate gives

θ∥∇u∥2L2 − γ∥u∥2L2 ≤ ℜB[u, u] + µ∥u∥2L2 = ℜ(f, u)L2 ≤ ∥f∥L2∥u∥L2 .

Hence (µ − γ)∥u∥2L2 ≤ ∥f∥L2∥u∥L2 and ∥L−1
µ ∥L2→L2 ≤ (µ − γ)−1. For µ ≥ γ + 1,

(µ− γ)−1 ≤ (γ + 2)(1 + µ)−1, which yields the stated estimate.
When L is self-adjoint with spectrum Σ ⊂ R, one can get a sharper bound ∥(L −
λ)−1∥L2→L2 = d(λ,Σ)−1 for every λ /∈ Σ (see Reed & Simon book Methods of Modern
Mathematical Physics, Vol I) (not examinable).

2. In the model case L = −∆ then Σ = {λk} ⊂ R+ and these are the harmonic frequen-
cies of the domain U , at which a U-shaped drum vibrates.

3. An interesting question, raised by Schuster, Bers and made famous in the 1966 article
“Can One Hear the Shape of a Drum?” by Mark Kac, is whether the sequence of eigenvalues
uniquely determines the shape of U . In dimension 2, it does for convex analytic domains
(Zelditch 2000), but not for some concave polygons (Gordon, Webb and Volpert 1992).
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LECTURE 19

4.4 Regularity theory of the Dirichlet problem
The goal of this section is to improve the regularity of the solution we have constructed in
H1

0 (U) so that it satisfies the strong (not just weak) formulation. We also obtain C∞–regularity
under appropriate assumptions on the coefficients of L and on U . The core elliptic estimate, in
the simplest case −∆u = f with u ∈ C∞

c (U), is∫
U
f 2 =

∫
U
(∆u)2 =

∫
U

( n∑
i=1

Diiu
)2

=

∫
U

n∑
i,j=1

DiiuDjju (4.7)

=

∫
U

n∑
i,j=1

DijuDiju =

∫
U

∣∣D2u
∣∣2,

where the last equality follows from two integrations by parts and the fact that u has compact
support in U . Thus the L2–norm of the full Hessian is controlled by (indeed equal to) the
L2–norm of its trace, and ∥u∥H2 is controlled by the datum ∥f∥L2 .

Theorem 4.23 (Interior elliptic regularity). Let L be uniformly elliptic in divergence form, with
bounded coefficients and U bounded. Let k ≥ 2, aij, bi, c ∈ Ck−1(U), and f ∈ Hk−2

loc (U). If
u ∈ H1(U) satisfies the weak formulation B[u, ·] = (f, ·), then u ∈ Hk

loc(U). More precisely, for
any V ⊂⊂ W̃ ⊂⊂ U there exists C > 0 (depending on k,V , W̃ ,U , a, b, c, n) such that

∥u∥Hk(V) ≤ C
(
∥f∥Hk−2(W̃) + ∥u∥L2(W̃ )

)
.

Remark 4.24. This shows that the solution is strong: u ∈ H2(V) implies Lu = f holds a.e.
in V by testing against v ∈ C∞

c (V). By Sobolev embedding (Theorem 3.21), if m > n/2
then Hm+2(V) ⊂ C2(V). Hence, if aij, bi, c ∈ Cm+1(U) and f ∈ Hm(U) with such m, then
u ∈ C2

loc(U) and Lu = f holds in the classical sense on U . If the coefficients and f are smooth,
then u is smooth (locally).

To get the result we would like to test the weak formulation with Dℓℓu (similarly to what
we have done in (4.7)), but we do not have second derivatives for the moment. To overcome
this difficulty we work with a discretized derivative, namely the difference quotients and
study their properties in connection with the weak derivative.

Proof of Theorem 4.23. It suffices to prove the case k = 2, the higher-order case following
by induction. Indeed, assume the estimate is known for some integer m ≥ 2. Suppose
aij, bi, c ∈ Cm(U), f ∈ Hm−1

loc (U), and u is a weak solution. By the induction hypothesis with
k = m we obtain u ∈ Hm

loc(U). For each ℓ the weak derivative ũ = Dℓu satisfies

B[ũ, φ] = (f̃ , φ) ∀φ ∈ C∞
c (U), f̃ := Dℓf −Dj

[
(∂ℓaij)Diu

]
− (∂ℓbi)Diu− (∂ℓc)u,

which is obtained by testing the weak formulation for u with v = −Dℓφ and integrating by
parts. Since aij, bi, c ∈ Cm and u ∈ Hm

loc, it follows that f̃ ∈ Hm−2
loc (U), so applying the k = m

estimate to ũ yields ũ ∈ Hm
loc(U) and hence u ∈ Hm+1

loc (U) with the stated bound. Thus it
remains to prove the case k = 2.
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For i ∈ {1, . . . , n} and |h| < d(V , ∂U) define the difference quotient

∆h
i u(x) :=

u(x+ hei)− u(x)

h
, x ∈ V ⊂⊂ U .

For u ∈ H1(U) we have
D(∆h

i u) = ∆h
i (Du).

Moreover, for V ⋐ W̃ ⋐ U there exists C > 0, independent of h, such that

∥∆h
i u∥L2(V) ≤ C∥Diu∥L2(W̃) for all |h| small, (4.8)

and conversely if we have the uniform bound ∥∆h
i u∥L2(V) ≤ C as h → 0 then Diu ∈ L2(V)

and ∥Diu∥L2(V) ≤ C (with the same constant) holds. Fix also W such that V ⋐ W ⋐ W̃ ⋐ U
and let ψ ∈ C∞

c (W) satisfy ψ ≡ 1 on V . For each ℓ ∈ {1, . . . , n} test the weak formulation
with28

v := −∆−h
ℓ

(
ψ2∆h

ℓu
)
∈ H1

0 (W̃), |h| < d(W , ∂W̃),

so that
Ia + Ib + Ic = If ,

where29

Ia :=

∫
U
aijDiuDj∆

−h
ℓ (ψ2∆h

ℓu), Ib :=

∫
U
biDiu∆

−h
ℓ (ψ2∆h

ℓu),

Ic :=

∫
U
c u∆−h

ℓ (ψ2∆h
ℓu), If :=

∫
U
f ∆−h

ℓ (ψ2∆h
ℓu).

Estimate for Ib. Using the discrete integration-by-parts identities∫
W̃
w∆−h

ℓ ζ = −
∫
W̃
∆h

ℓw ζ,

valid for w, ζ supported in W ⊂⊂ W̃ and |h| < d(W , ∂W̃), we get

|Ib| =
∣∣∣∣∫

W̃
biDiu∆

−h
ℓ (ψ2∆h

ℓu)

∣∣∣∣ = ∣∣∣∣−∫
W̃
ψ2∆h

ℓ (biDiu)∆
h
ℓu

∣∣∣∣
=

∣∣∣∣−∫
W̃
ψ2
[
(τheℓbi)∆

h
ℓDiu+ (∆h

ℓ bi)Diu
]
∆h

ℓu

∣∣∣∣
≤ C

∫
W̃
ψ2
(
|∆h

ℓDu|+ |Du|
)
|∆h

ℓu|

≤ C
(∫

W̃
ψ2|∆h

ℓDu|2
)1/2

∥∆h
ℓu∥L2(W̃) + C∥Du∥L2(W̃)∥∆h

ℓu∥L2(W̃)

≤ C
(
∥u∥2

H1(W̃)
+ ∥u∥H1(W̃)

(∫
W̃
ψ2|D∆h

ℓu|2
)1/2)

≤ ε

∫
W̃
ψ2|D∆h

ℓu|2 + Cε∥u∥2H1(W̃)
,

28Observe that this choice is dictated by the fact that for u ∈ C2 we have ∆−h
ℓ (∆h

ℓ u(x)) → ∂ℓℓu(x), and ψ2

works as cut-off function, taking the square to have it non-negative and to simplify the estimates by Cauchy-
Schwarz in the following.

29To simplify notation we keep the convention that repeated indices are summed over 1, . . . , n.
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Estimate for Ic. Similarly, using discrete integration by parts again,

|Ic| =
∣∣∣∣∫

U
c u∆−h

ℓ (ψ2∆h
ℓu)

∣∣∣∣ = ∣∣∣∣−∫
W̃
∆h

ℓ (cu)ψ
2∆h

ℓu

∣∣∣∣
=

∣∣∣∣−∫
W̃

[
(τheℓc)∆

h
ℓu+ (∆h

ℓ c)u
]
ψ2∆h

ℓu

∣∣∣∣
≤
∫
W̃
ψ2
(
|τheℓc| |∆h

ℓu|2 + |∆h
ℓ c| |u| |∆h

ℓu|
)

≤ C

∫
W̃
ψ2|∆h

ℓu|2 + C∥u∥L2(W̃)∥∆h
ℓu∥L2(W̃)

≤ C∥Du∥2
L2(W̃)

+ C∥u∥2
L2(W̃)

≤ C∥u∥2
H1(W̃)

,

Estimate for If . We need to keep f undifferentiated. We estimate

|If | =
∣∣∣∣∫

W̃
f ∆−h

ℓ (ψ2∆h
ℓu)

∣∣∣∣ ≤ ∥f∥L2(W̃) ∥∆−h
ℓ (ψ2∆h

ℓu)∥L2(W̃)

≤ C∥f∥L2(W̃) ∥D(ψ2∆h
ℓu)∥L2(W̃)

≤ C∥f∥L2(W̃)

((∫
W̃
ψ2|D∆h

ℓu|2
)1/2

+ ∥∆h
ℓu∥L2(W̃)

)
≤ ε

∫
W̃
ψ2|D∆h

ℓu|2 + Cε∥f∥2L2(W̃)
+ C∥f∥L2(W̃)∥Du∥L2(W̃)

≤ ε

∫
W̃
ψ2|D∆h

ℓu|2 + Cε

(
∥u∥2

H1(W̃)
+ ∥f∥2

L2(W̃)

)
,

Estimate for Ia. Using discrete integration by parts in the ℓ–direction,

−Ia =
∫
W̃
∆h

ℓ (aijDiu)Dj(ψ
2∆h

ℓu)

=

∫
W̃

[
(τheℓaij)∆

h
ℓDiu+ (∆h

ℓ aij)Diu
](
ψ2Dj∆

h
ℓu+ 2ψ(∂jψ)∆

h
ℓu
)

=

∫
W̃
ψ2(τheℓaij)∆

h
ℓDiu∆

h
ℓDju+ 2

∫
W̃
(τheℓaij)∆

h
ℓDiu∆

h
ℓuψ∂jψ

+

∫
W̃
ψ2(∆h

ℓ aij)Diu∆
h
ℓDju+ 2

∫
W̃
(∆h

ℓ aij)Diu∆
h
ℓuψ∂jψ

≥ θ

∫
W̃
ψ2|∆h

ℓDu|2 − C

∫
W̃
ψ2|∆h

ℓDu||Du| − C

∫
W̃
|∆h

ℓDu||∆h
ℓu| − C

∫
W̃
|Du||∆h

ℓu|

≥ θ

∫
W̃
ψ2|∆h

ℓDu|2 − ε

∫
W̃
ψ2|D∆h

ℓu|2 − Cε∥u∥2H1(W̃)
,

Conclusion. Since −Ia = Ib + Ic − If , combining the above bounds gives, for any ε > 0,

θ

∫
W̃
ψ2|∆h

ℓDu|2 ≤ ε

∫
W̃
ψ2|D∆h

ℓu|2 + Cε

(
∥u∥2

H1(W̃)
+ ∥f∥2

L2(W̃)

)
.

Choosing ε > 0 sufficiently small and absorbing the
∫
ψ2|D∆h

ℓu|2 term into the left-hand side,
we obtain ∫

W̃
ψ2|∆h

ℓDu|2 ≤ C
(
∥u∥2

H1(W̃)
+ ∥f∥2

L2(W̃)

)
.
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Since ψ ≡ 1 on V , this implies

∥∆h
ℓDu∥2L2(V) ≤ C

(
∥u∥2

H1(W̃)
+ ∥f∥2

L2(W̃)

)
,

and letting h→ 0 we conclude

∥u∥2H2(V) ≤ C
(
∥u∥2

H1(W̃)
+ ∥f∥2

L2(W̃)

)
.

Also, testing the equation against u, using uniform ellipticity, Cauchy-Schwarz and Young we
get on W̃

θ∥Du∥2L2 ≤
∫
aijDjuDiu =

∫
fu−

∫
biDiuu−

∫
cu2

≤ ∥f∥L2∥u∥L2 + ∥b∥L∞∥Du∥L2∥u∥L2 + ∥c∥L∞∥u∥2L2

≤ ε∥Du∥2L2 + Cε

(
∥u∥2L2 + ∥f∥2L2

)
≤ ε∥Du∥2L2 + Cε

(
∥Du∥2L2 + ∥f∥2L2

)
,

and we absorb the ε∥Du∥2L2 term in the left-hand side. Combining this bound with the previous
inequality gives the desired interior H2 estimate.

Remark 4.25. 1. One can also prove for operators with analytic coefficients, that solutions
are real-analytic; in particular the interior Cauchy problem with Cauchy data on Σ ⊂ U
that fail to be real-analytic has no solution.

2. This is a local result (away from the boundary). Thus singularities do not propagate in
from the boundary or from rough regions of f ; this non-propagation is characteristic of
elliptic (and more generally hypoelliptic) equations. In general, one expects singularities
to propagate along directions where the principal symbol vanishes.

3. Because of locality, the proof only needs uniform ellipticity on compact subsets of U ;
degeneracy may occur near ∂U .

We finally turn to regularity up to the boundary.

Theorem 4.26 (Boundary elliptic regularity, divergence form). Let U ⊂ Rn be a bounded
domain with ∂U of class Ck, k ≥ 2. Let L be uniformly elliptic in divergence form, with aij = aji,
aij ∈ Ck−1(U), and bi, c ∈ Ck−2(U). If f ∈ Hk−2(U) and u ∈ H1

0 (U) is a weak solution of
Lu = f in U , then

∥u∥Hk(U) ≤ C
(
∥u∥L2(U) + ∥f∥Hk−2(U)

)
for some constant C depending on U , k, n and the coefficients.

Proof. We argue as in the interior case. As in the interior case, the case k > 2 follows by
induction from the case k = 2. For k = 2 it suffices to assume aij ∈ C1(U) and bi, c ∈ L∞(U).
By localization, flattening of ∂U , and a partition of unity, it is enough to prove a local estimate
near the boundary. Thus we may assume

U = B(0, 1) ∩ {xn > 0}, V := B(0, 1
2
) ∩ {xn > 0},

and choose ψ ∈ C∞
c (B(0, 1)) with ψ ≡ 1 on V .

For ℓ = 1, . . . , n− 1 and |h| small, consider the tangential difference quotients. Since eℓ
is tangential to {xn = 0}, for |h| small these are well defined on suppψ ⊂ U . Define the
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4.4 Regularity theory of the Dirichlet problem 4 Ellipticity

test function v := −∆−h
ℓ (ψ2∆h

ℓu) as in the interior case. For |h| small, v ∈ H1
0 (U) because

u ∈ H1
0 (U) and ψ has compact support in B(0, 1). The weak formulation∫

U
aijDjuDiv +

∫
U
biDiu v +

∫
U
cuv =

∫
U
fv

holds for all v ∈ H1
0 (U). Plugging in v = −∆−h

ℓ (ψ2∆h
ℓu) and using discrete integration by

parts in the ℓ–direction, the product rules and the uniform ellipticity of (aij), one obtains,
exactly as in the interior case but with only tangential difference quotients,∫

V

|∆h
ℓDu|2 ≤

∫
U
ψ2|∆h

ℓDu|2 ≤ C
(
∥f∥2L2(U) + ∥u∥2L2(U) + ∥Du∥2L2(U)

)
,

for all |h| sufficiently small and all ℓ = 1, . . . , n− 1, with C independent of h. Letting h→ 0
and using the characterization of weak derivatives by difference quotients, we obtain∫

V

|DℓDu|2 ≤ C
(
∥f∥2L2(U) + ∥u∥2L2(U) + ∥Du∥2L2(U)

)
, ℓ = 1, . . . , n− 1.

Thus all D2
iju with at least one tangential index (i ≤ n− 1 or j ≤ n− 1) belong to L2(V ) with

the same bound.
To control D2

nnu we use the equation. By interior regularity for divergence form operators,
u ∈ H2

loc(U), so we may rewrite

−Di(aijDju) + biDiu+ cu = f a.e. in U
and we can pass to the non-divergence form (here we use aij ∈ C1(U) and the interior estimate
u ∈ H2

loc(U), so that Di(aijDju) = (Diaij)Dju+ aijD
2
iju holds in the weak sense)

aijD
2
iju+ b̃iDiu+ cu = f,

where b̃i := bi +Djaij ∈ L∞(U). Hence

annD
2
nnu = −

∑
(i,j)̸=(n,n)

aijD
2
iju− b̃iDiu− cu+ f.

Uniform ellipticity implies ann ≥ θ > 0 a.e. (take ξ = en in the ellipticity inequality),
so 1/ann ∈ L∞(V ). All terms on the right-hand side belong to L2(V ): the mixed second
derivatives are already controlled, and b̃i, c ∈ L∞, while u,Du, f ∈ L2(U). Therefore

D2
nnu =

1

ann

(
−

∑
(i,j)̸=(n,n)

aijD
2
iju− b̃iDiu− cu+ f

)
∈ L2(V ),

with

∥D2
nnu∥L2(V ) ≤ C

(
∥f∥L2(U) + ∥u∥L2(U) + ∥Du∥L2(U) +

∑
(i,j)̸=(n,n)

∥D2
iju∥L2(U)

)
.

Combining the tangential estimate with this bound yields

∥u∥H2(V ) ≤ C
(
∥u∥L2(U) + ∥Du∥L2(U) + ∥f∥L2(U)

)
.

thus, estimating ∥Du∥L2(U) by ∥u∥L2(U)+ ∥f∥L2(U), as we did in the interior case, we conclude

∥u∥H2(V ) ≤ C
(
∥u∥L2(U) + ∥f∥L2(U)

)
.
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LECTURE 20
Remark 4.27. There is also a “pointwise/Hölder regularity theory” (see the Elliptic PDE Lent
course): maximum principles control u in the interior by its boundary values for classical u ∈
C2(U), and Schauder estimates (1934) show that if a, b, c, f ∈ Ck,γ(U) then u ∈ Ck+2,γ(U)
for k ∈ N and γ ∈ (0, 1).

This concludes the study of the Dirichlet problem. As compared to the Cauchy problem,
one boundary condition has been dropped (that one on ∂Nu) and the Cauchy hypersurface ∂U
now encloses the domain U . Dropping instead the boundary condition on u and prescribing
that on ∂Nu results in the Neumann problem{

Lu = f in U ,
∂Nu = g on ∂U ,

For the Neumann problem the functional setup and regularity theory are very similar to the
Dirichlet case (one works in H1 and obtains the same interior and boundary Hk- and Ck,α-
regularity under analogous assumptions on the coefficients and data), but the operator now
has always a non-trivial kernel (constants). The existence requires a compatibility condition
between f and g (e.g.

∫
U f +

∫
∂U g = 0 in the model case L = −∆) and uniqueness holds only

up to addition of constants. In particular, one cannot in general reduce a non-homogeneous
Neumann condition to a homogeneous one as we do for Dirichlet problem.

5 Hyperbolicity

5.1 The notion of hyperbolicity
Very roughly, hyperbolic equations are those for which the Cauchy problem (prescribing initial
data on a hypersurface) is the “right” notion of well-posedness in finite regularity. This is the
broad class of PDEs for which some analogue of the Cauchy–Kovalevskaya theorem survives
outside the analytic category.

Let L be a linear differential operator of order k ≥ 1 on an open set U ⊂ Rn+1, with
coordinates y = (y0, . . . , yn). We write

Lu =
∑
|α|≤k

aα(y) ∂
α
y u.

Recall that the principal symbol of L is the homogeneous polynomial of degree k

σp(L)(y, η) :=
∑
|α|=k

aα(y) η
α, η ∈ Rn+1.

Also, a nonzero vector η is called characteristic at y if σp(L)(y, η) = 0. A smooth hypersurface
S ⊂ U is non-characteristic at y ∈ S if every nonzero normal vector to S at y is non-
characteristic.

Definition 5.1. Let L be a linear differential operator of order k ≥ 1 on an open set U ⊂ Rn+1.
We say that L is (locally) hyperbolic at a point y0 ∈ U if there exists a local coordinate system
y = (t, x) ∈ R× Rn in a neighbourhood of y0 such that, for every y in that neighbourhood
and every ξ ∈ Rn \ {0}, the map

ηt 7−→ σp(L)(y, ηt, ξ), η = (ηt, ξ),
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is a polynomial of degree k in ηt with k real roots (counted with multiplicity). Also, we say
that L is (locally) strictly hyperbolic at y0 if, in addition, for every y in that neighbourhood and
every ξ ∈ Rn \ {0}, these k real roots in ηt are simple (i.e. pairwise distinct).

Example 5.2 (First-order operators). Consider a first-order operator

Lu(y) =
n∑

j=0

aj(y) ∂yju(y),

with real coefficients and a(y0) ̸= 0. Its principal symbol is σp(L)(y, η) =
∑n

j=0 aj(y) ηj.

We can choose new coordinates y = (t, x) so that at y0 the coefficient of ∂t does not vanish,
at(y

0) ̸= 0 (if for some choice of t we have at(y0) = 0, then the hypersurface {t = const} is
characteristic there, and we change coordinates). In these coordinates,

σp(L)(y
0, ηt, ξ) = at(y

0) ηt +
n∑

j=1

aj(y
0) ξj.

For each fixed ξ ∈ Rn this is a linear polynomial in ηt with the unique real root ηt =

−
∑n

j=1 aj(y
0) ξj

at(y0)
. Thus any first-order linear PDE with real coefficients is locally hyperbolic

of order 1 at points where not all aj vanish.

Example 5.3 (Second-order divergence form operators). We now specialise to second-order
scalar operators in divergence form

Lu(y) :=
n∑

i=0

∂yi

( n∑
j=0

ãij(y) ∂yju(y)
)
+

n∑
i=0

b̃i(y) ∂yiu(y) + c̃(y)u(y) = f̃(y),

with smooth coefficients on Rn+1. The principal symbol is the quadratic form

σp(L)(y, η) =
n∑

i,j=0

ãij(y) ηiηj, η ∈ Rn+1.

Fix a point y = y0. By an orthonormal change of variables we can diagonalise the constant
real symmetric matrix A(y0) = (ãij(y

0))ij , and assume that at y0 the principal symbol is
non-degenerate and has Lorentzian signature (1, n) (that is, one eigenvalue is positive and n
are negative, or vice versa). In other words,

σp(L)(y
0, η) = λ2n+1η

2
n+1 −

n∑
i=1

λ2i η
2
i , λi > 0.

Renaming ηn+1 = ηt and ηi = ξi for 1 ≤ i ≤ n, the characteristic equation

λ2n+1η
2
t −

n∑
i=1

λ2i ξ
2
i = 0

has the two real roots

ηt = ± 1

λn+1

( n∑
i=1

λ2i ξ
2
i

)1/2
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for all ξ ∈ Rn, so L is hyperbolic of order 2 at y0 (indeed, strictly hyperbolic with respect
to t in this case). If we restrict to operators of wave type, meaning that in the coordinates
y = (t, x) the mixed time–space second-order terms in the principal part vanish, i.e. ã0j(y) =
ãj0(y) = 0 for all j ≥ 1, after rescaling the corresponding coordinate and renaming variables
as y = (t, x) ∈ R× Rn, we can locally rewrite the equation in the form

∂ttu(t, x) =
n∑

i=1

∂xi

( n∑
j=1

aij(t, x) ∂xj
u(t, x)

)
(5.1)

−
n∑

i=1

bi(t, x) ∂xi
u(t, x)− b(t, x) ∂tu(t, x)− c(t, x)u(t, x) + f(t, x),

where the matrix (aij(t, x))1≤i,j≤n is uniformly elliptic:
n∑

i,j=1

aij(t, x) ξiξj ≥ θ|ξ|2 for all ξ ∈ Rn and some θ > 0.

The case (aij) = Id, b = 0, c = 0, f = 0, corresponds to the wave equation

□u := ∂2ttu−∆xu = 0.

The set {(x, t) : t = 0} is locally a non-characteristic hypersurface so we can hope to solve
a Cauchy problem. In order to go beyond local existence, we will add additional boundary
conditions: given a cylindrical domain U = (0, T )×U , we will specify u|t=0 and ∂tu|t=0 (initial
data), as well as boundary data in x ∈ ∂U at each time, resulting in an initial boundary
value problem (IBVP).

5.2 The IBVP for second-order PDEs
We begin with the situation that is closest to the one treated in the previous chapter.

5.2.1 The weak formulation

Let U ⊂ Rn be a bounded open set with ∂U ∈ C1, and fix T > 0. Set

UT := (0, T )× U,

and decompose its boundary as

∂UT = Σ0 ∪ ΣT ∪ ∂∗UT ,

where
Σ0 := {0} × U, ΣT := {T} × U, ∂∗UT := [0, T ]× ∂U.

We consider the initial boundary value problem

∂2ttu+ Lu = f in UT ,

u = ψ0 on Σ0,

∂tu = ψ1 on Σ0,

u = 0 on ∂∗UT ,

(5.2)
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where f = f(t, x), ψ0 = ψ0(x) and ψ1 = ψ1(x) are given data, and

Lu := −∂xi

(
aij∂xj

u
)
+ bi∂xi

u+ cu

with coefficient fields aij, bi, c smooth on UT . We assume that a = (aij) is symmetric and
uniformly elliptic, i.e.

aij(t, x) ξiξj ≥ θ|ξ|2 for all (t, x) ∈ UT , ξ ∈ Rn,

for some constant θ > 0.
As in the previous chapter, we look for a weak formulation that makes sense for u ∈ H1(UT ).

To derive it, start with a classical solution u ∈ C2(UT ) of (5.2) and test the equation against a
function

v ∈ C2(UT ), v = 0 on ∂∗UT ∪ ΣT .

We purposely do not impose v = 0 on Σ0, because we want the boundary condition on ∂tu
at t = 0 to appear in the weak formulation. Thus the boundary condition on ∂∗UT is again
encoded in the choice of the function space for the test functions.

Integrating by parts in t and x gives∫
UT

fv =

∫
UT

[
− (∂tu)(∂tv) + aij(∂xi

u)(∂xj
v) + bi(∂xi

u) v + cuv
]
−
∫
Σ0

ψ1v. (5.3)

For u ∈ C2(UT ) the combination of (5.3) for all v ∈ C2(UT ) with v = 0 on ∂∗UT ∪ ΣT ,
together with u = ψ0 on Σ0 and u = 0 on ∂∗UT , is equivalent to the original problem (5.2).
Indeed:

• Testing (5.3) with v ∈ C∞
c (UT ) and integrating by parts recovers the PDE ∂2ttu+Lu = f

in UT .
• Testing (5.3) with v ∈ C∞(UT ) that vanishes on ∂∗UT ∪ ΣT but not necessarily on Σ0

yields
∫
Σ0
(ψ1 − ∂tu)v = 0 for all such v, hence ∂tu = ψ1 on Σ0.

This motivates the following definition.

Definition 5.4 (Weak solutions to the second-order IBVP). Let T > 0, U ⊂ Rn be bounded
with ∂U ∈ C1, and UT = (0, T )× U . Assume

f ∈ L2(UT ), ψ0 ∈ H1
0 (U), ψ1 ∈ L2(U),

and
aij, bi, c ∈ L∞(UT ).

A function u ∈ H1(UT ) is called a weak solution of (5.2) if its traces satisfy

u|Σ0 = ψ0, u|∂∗UT
= 0,

and (5.3) holds for every v ∈ H1(UT ) whose trace vanishes on ∂∗UT ∪ ΣT .

Remark 5.5. The phrase “in the trace sense” means that we use the trace operator from
Theorem 3.18

Tr : H1(UT ) −→ L2(Σ0)× L2(ΣT )× L2(∂∗UT )

and interpret, for example, u|Σ0 = ψ0 as an equality in L2(Σ0) between the trace of u and the
given boundary datum ψ0.
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LECTURE 21
5.2.2 The energy estimate

The starting point in the study of evolution equations in weak form is the identification of a
priori (energy) estimates. “A priori” means that, before proving existence of solutions, we
temporarily assume that a smooth solution exists and look for a norm on which an estimate
can be propagated from the boundary data into the domain.

To introduce the idea, consider the wave equation
□u := ∂2ttu−∆xu = 0

on UT = (0, T )× U , for a smooth solution u satisfying
u|t=0 = ψ0, (∂tu)|t=0 = ψ1 on U, u|∂∗UT

= 0

(which implies (∂tu)|∂∗UT
= 0 as well). For t ∈ (0, T ), set Ut := (0, t)×U and test the equation

with ∂tu. Integration by parts gives

0 =

∫
Ut

[
(∂2ttu)(∂tu)− (∆xu)(∂tu)

]
=

1

2

∫
Ut

∂t
[
(∂tu)

2 + |∇xu|2
]

=
1

2

∫
Σt

[
(∂tu)

2 + |∇xu|2
]
− 1

2

∫
Σ0

[
(∂tu)

2 + |∇xu|2
]
. (5.4)

Thus the energy

E[u](t) :=
1

2

∫
Σt

[
(∂tu)

2 + |∇xu|2
]

is conserved in time: E[u] is the same for all t ∈ (0, T ). In particular, when there is enough
regularity to perform this calculation, the energy identity immediately implies uniqueness.
For example, for the wave equation, if ψ0 = ψ1 = 0, then

1

2

∫
Σ0

[
ψ2
1 + |∇xψ0|2

]
= 0,

and (5.4) gives E[u](t) = 0 for all t ∈ (0, T ), hence u ≡ 0 in UT .
In the general case corresponding to (5.3), one obtains similarly the energy identity

E[u](t)− E[u](0) =

∫
Ut

[1
2
(∂taij)(∂xi

u)(∂xj
u)− bi(∂xi

u)(∂tu)− cu(∂tu) + f(∂tu)
]
, (5.5)

with

E[u](t) :=
1

2

∫
Σt

[
(∂tu)

2 + aij∂xi
u ∂xj

u
]
, E[u](0) =

1

2

∫
Σ0

[
ψ2
1 + aij(0, ·) ∂xi

ψ0 ∂xj
ψ0

]
.

By the uniform ellipticity of (aij), the spatial part of the energy controls |∇xu|, so together
with the (∂tu)

2 term we obtain

E[u](t) ≥ C

∫
Σt

|∇t,xu|2.

Thus if the right-hand side of (5.5) can be estimated in terms of the prescribed data on UT , we
obtain a uniform bound

sup
t∈(0,T )

E[u](t) ≤ C ′(∥ψ0∥2H1(U) + ∥ψ1∥2L2(U) + ∥f∥2L2(UT )

)
,

which yields u ∈ L∞(0, T ;H1(U)) and ∂tu ∈ L∞(0, T ;L2(U)), where L∞(0, T ;X) is defined
by the space of functions such that ∥u∥L∞(0,T ;X) := ess supt∈(0,T ) ∥u(t)∥X <∞.
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5.2.3 Uniqueness

In getting uniqueness for the IBVP, we would like to use the energy estimates but for the
moment the regularity is only H1(UT ) and second derivatives need not exist. The main idea
to overcome this difficulty is to swap the roles of u and the test function and to choose a test
function v so that ∂tv behaves like u, thereby reducing the number of derivatives falling on u
in the estimates.

Theorem 5.6 (Uniqueness of weak solutions). Let T > 0 and U ⊂ Rn be bounded with
∂U ∈ C1, and set UT = (0, T )× U . Assume

f ∈ L2(UT ), ψ0 ∈ H1
0 (U), ψ1 ∈ L2(U),

and
aij, ∂taij, bi, ∇xbi, c ∈ L∞(UT ).

Then there is at most one weak solution of (5.2) in the sense of Definition 5.4.

Proof of Theorem 5.6. Since the problem is linear, the statement is equivalent to proving that
the only weak solution for zero data is the zero solution. We therefore consider ψ0 = ψ1 = 0

on U and f = 0 on UT . We then consider the test function v(t, x) :=
∫ T

t
u(s, x)e−λs ds which

is in H1(UT ) since u ∈ H1(UT ), and satisfies v = 0 on ΣT by construction and v = ∂tv = 0
on ∂∗UT since u = 0 on ∂∗UT . Standard integration theorems show ∂tv = −ue−λt almost
everywhere, and (5.3) yields

0 =

∫
UT

[
(∂tu)ue

−λt − aij(∂
2
tiv)(∂jv)e

λt + bi(∂iu)v + cuv
]
=: A+B

with (using the symmetry aij = aji)
A :=

1

2

∫
UT

∂t
[
u2e−λt − aij(∂iv)(∂jv)e

λt − v2eλt
]
+
λ

2

∫
UT

[
u2e−λt + aij(∂iv)(∂jv)e

λt + v2eλt
]

B :=

∫
UT

[
bi(∂iu)v + (c− 1)uv +

1

2
(∂taij)(∂iv)(∂jv)e

λt

]
.

We then bound A from below (using v = ∂iv = 0 on ΣT and u = 0 on Σ0)

A =

∫
ΣT

u2

2
e−λt +

∫
Σ0

[
aij
2
(∂iv)(∂jv) +

v2

2

]
+
λ

2

∫
UT

[
u2e−λt + v2eλt + aij(∂iv)(∂jv)e

λt
]

≥ λ

2

∫
UT

[
u2e−λt + v2eλt + θ |∇xv|2 eλt

]
and then bound |B| from above (using u = v = 0 on ∂∗UT )

|B| =
∣∣∣∣∫

UT

[
−(∂ibi)uv − biu(∂iv) + (c− 1)uv +

1

2
(∂taij)(∂iv)(∂jv)e

λt

]∣∣∣∣
≤ ∥∂ibi∥∞ +max{θ−1, 1} ∥bi∥∞ + |c− 1|+ θ−1 ∥∂ta∥∞

2

∫
UT

[
u2e−λt + v2eλt + θ |∇xv|2 eλt

]
.

This implies, with λ > ∥∂ibi∥∞ + max{θ−1, 1}∥bi∥∞ + |c − 1| + θ−1∥∂ta∥∞, that u = 0 on
UT .
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Remark 5.7. The conceptual idea behind this argument is to “commute ∂−1
t ” with the PDE

(at the cost of some lower order error terms). This argument is reminiscent of the vector
field method (1985), widely used to study quasilinear wave equations such as the Einstein
equations. Note that for the wave equation, one can simplify the argument by taking λ = 0
and using the boundary term in A (check it).

5.2.4 Existence

We turn to existence. The difficulty is to find an approximation path based on an already
known result of existence for differential equations: we will use the Galerkin method
(1915) which consists in projecting on well-chosen finite dimensional spaces, and using ODE
theory to construct the approximate solutions. These finite-dimensional spaces are given
by the enumeration of a Hilbert orthonormal basis that generalises the Fourier basis: the
eigenfunctions of the Dirichlet problem of the Laplacian on U . The convergence of the scheme
is based on the generalization of the energy estimate (5.4), with an additional difficulty: we
have to provide a “discrete” version of (5.4) on the approximate solutions, uniformly in the
approximation.

Theorem 5.8 (Existence of weak solutions). Given T > 0, U ⊂ Rn open bounded with
∂U ∈ C1, UT = (0, T )×U , f ∈ L2(UT ), ψ0 ∈ H1

0 (U), ψ1 ∈ L2(U) and a, b, c ∈ C0(UT ), there
exists a weak solution u ∈ H1(UT ) to (5.2). Moreover, there exists C = C(U, T, a, b, c, n) > 0
such that

∥u∥H1(UT ) ≤ C
(
∥f∥L2(UT ) + ∥ψ0∥H1(U) + ∥ψ1∥L2(U)

)
.

Proof of Theorem 5.8. By a standard density argument it is enough to prove the theorem under
the additional assumptions ψ0, ψ1 ∈ C∞

c (U) and f ∈ C∞
c (UT ).

Step 1: Dirichlet eigenfunctions. Consider the Dirichlet eigenvalue problem

−∆φ = λφ in U ⊂ Rn, φ|∂U = 0.

By Theorems 4.21 and 4.26 there exists a sequence of eigenpairs (φk, λk)k≥1 withφk ∈ H1
0 (U)∩

C∞(U) such that
0 < λ1 < λ2 < . . . , λk → ∞ as k → ∞.

The self-adjointness of (µ−∆)−1 (for any fixed µ > 0 as in Theorem 4.21) implies that the
eigenfunctions (φk) are orthogonal in L2(U). Moreover, if we multiply −∆φk = λkφk by φℓ

and integrate by parts, we obtain orthogonality in H1
0 (U) as well:∫

U

∇φk · ∇φℓ = λk

∫
U

φkφℓ = λkδkℓ.

We may therefore choose (φk)k≥1 orthonormal in L2(U) and orthogonal in H1
0 (U).
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Step 2: Galerkin approximation. For N ≥ 1 we look for

uN(t, x) =
N∑
k=1

uN :k(t)φk(x), t ∈ [0, T ], x ∈ U,

with scalar coefficients uN :k(t). That is, we are looking at an ansatz that lives in a finite N -
dimensional space. For an exact solutionu one has (u(0, ·), φk) = (ψ0, φk) and (∂tu(0, ·), φk) =
(ψ1, φk) for all k. We impose the same identities for the Galerkin approximation in the finite-
dimensional space span{φ1, . . . , φN}, i.e.

uN :k(0) = (ψ0, φk), u′N :k(0) = (ψ1, φk), k = 1, . . . , N.

We now impose that uN satisfies the PDE in weak form, but only when tested against the
finite-dimensional subspace span{φ1, . . . , φN}. More precisely, to choose how the coefficients
uN :k(t) evolve, we insert the ansatz for uN into (5.2) and, for each fixed t ∈ [0, T ] and each
k = 1, . . . , N , we require that the weak formulation holds with test function φk:∫

U

[
∂ttuN φk + aij(∂iuN)(∂jφk) + bi(∂iuN)φk + b(∂tuN)φk + cuNφk

]
=

∫
U

f φk. (5.6)

Inserting uN(t, x) =
∑N

ℓ=1 uN :ℓ(t)φℓ(x) and using the orthonormality of (φk) in L2(U), we
obtain

u′′N :k(t) +
N∑
ℓ=1

AN :k,ℓ(t)uN :ℓ(t) +
N∑
ℓ=1

BN :k,ℓ(t)u
′
N :ℓ(t) = CN :k(t),

for all t ∈ [0, T ] and k = 1, . . . , N , where

AN :k,ℓ(t) :=

∫
Σt

(
aij(t, x) ∂iφℓ(x) ∂jφk(x) + bi(t, x) ∂iφℓ(x)φk(x) + c(t, x)φℓ(x)φk(x)

)
dx,

BN :k,ℓ(t) :=

∫
Σt

b(t, x)φℓ(x)φk(x) dx,

CN :k(t) :=

∫
Σt

f(t, x)φk(x) dx.

This is a linear system of second-order ODEs with continuous coefficients on [0, T ], so (after
rewriting it as a first-order system) it has a unique solution (uN :k)

N
k=1 ∈ C2([0, T ]).

Step 3: A uniform H1(UT ) estimate.
We now derive an energy estimate. We multiply (5.6) by u′N :k(t)e

−λt, integrate in t ∈
[0, T ′] ⊂ [0, T ), and sum over k:∫

UT ′

[
(∂2ttuN)(∂tuN) + aij(∂iuN)(∂

2
tjuN) + bi(∂iuN)(∂tuN)

+ b(∂tuN)
2 + cuN(∂tuN)

]
e−λs dx ds =

∫
UT ′

(∂tuN)fe
−λs dx ds.
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By rearranging terms as in the proof of uniqueness, we obtain
1

2

∫
UT ′

∂t

[(
(∂tuN(s))

2 + aij(s)(∂iuN(s))(∂juN(s)) + (uN(s))
2
)
e−λs

]
dx ds

+
λ

2

∫
UT ′

[
(∂tuN(s))

2 + aij(s)(∂iuN(s))(∂juN(s)) + (uN(s))
2
]
e−λs dx ds

=

∫
UT ′

[
1

2
(∂taij(s))(∂iuN(s))(∂juN(s))− bi(s)(∂iuN(s))(∂tuN(s))

− b(s)(∂tuN(s))
2 − (c(s)− 1)uN(s)(∂tuN(s)) + f(s)(∂tuN(s))

]
e−λs dx ds.

The right-hand side is bounded (using Cauchy-Schwarz, Young’s inequality and the bounded-
ness of the coefficients) above by

RHS ≤ C

∫ T ′

0

(
∥∂tuN(s)∥2L2(U) + ∥∇xuN(s)∥2L2(U) + ∥uN(s)∥2L2(U) + ∥f(s)∥2L2(U)

)
e−λs ds

for some C > 0 independent of N . On the other hand, using the uniform ellipticity of (aij),
the left-hand side is bounded below by

LHS ≥ E[uN ](T
′)e−λT ′ − E[uN ](0)

+
λ

2

∫ T ′

0

(
∥∂tuN(s)∥2L2(U) + θ∥∇xuN(s)∥2L2(U) + ∥uN(s)∥2L2(U)

)
e−λs ds,

where
E[uN ](t) :=

1

2

∫
Σt

[
(∂tuN)

2 + aij(∂iuN)(∂juN) + (uN)
2
]
dx ≥ 0.

For λ large enough we deduce, absorbing the exponential factors,

E[uN ](T
′) + ∥uN∥2H1

t,x(UT ′ )
≤ C ′

(
E[uN ](0) + ∥f∥2L2(UT ′ )

)
(5.7)

for some constant C ′ > 0 independent of N . Letting T ′ → T we obtain

∥uN∥2H1
t,x(UT ) ≤ C ′

(
E[uN ](0) + ∥f∥2L2(UT )

)
with a constant uniform in N .

We now estimate the initial energy. Denote

ψN
0 :=

N∑
k=1

(ψ0, φk)L2(U)φk, ψN
1 :=

N∑
k=1

(ψ1, φk)L2(U)φk.

By Bessel’s inequality in L2(U),
∥ψN

0 ∥L2(U) ≤ ∥ψ0∥L2(U), ∥ψN
1 ∥L2(U) ≤ ∥ψ1∥L2(U).

Moreover, using the orthogonality of (φk) in H1
0 (U) and the relation ∥∇xφk∥2L2(U) = λk under

our normalisation ∥φk∥L2(U) = 1, we get

∥∇xψ
N
0 ∥2L2(U) =

N∑
k=1

(ψ0, φk)
2
L2(U)∥∇xφk∥2L2(U) =

N∑
k=1

λk(ψ0, φk)
2
L2(U)

=
N∑
k=1

(
∇xψ0,

∇xφk√
λk

)2

L2(U)

≤ ∥∇xψ0∥2L2(U),
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since the sequence (∇xφk/
√
λk) is orthonormal in L2(U). Hence

E[uN ](0) ≤ C ′′
(
∥ψ0∥2H1(U) + ∥ψ1∥2L2(U)

)
uniformly in N , and we obtain

∥uN∥2H1(UT ) ≤ C ′′′
(
∥ψ0∥2H1(U) + ∥ψ1∥2L2(U) + ∥f∥2L2(UT )

)
with a constant independent of N (recall that H1(UT ) refers to gradients in both t and x).
Step 4: Compactness and weak derivatives. By the Rellich–Kondrachov theorem, there exists a
subsequence (still denoted uN ) converging in L2(UT ) to some u ∈ L2(UT ), and at the same
time bounded in H1(UT ). Thus, up to extracting a subsequence once more, we may assume

uN ⇀ u weakly in H1(UT ), uN → u strongly in L2(UT ).

Here and below, uN ⇀ u weakly in H (Hilbert space) means that

(uN , ϕ)H → (u, ϕ)H for every ϕ ∈ H,

and we used (Banach-Alaoglu theorem) that bounded sets in Hilbert spaces are weakly relatively
compact.

Using our approximation results in Proposition 3.14 on the test functions, one checks that
the derivatives ∂tuN and ∂iuN converge weakly to generalised derivatives Dtu,Diu ∈ L2(UT ),
i.e.

(∂tuN , φ)L2(UT ) → (Dtu, φ)L2(UT ), (∂iuN , φ)L2(UT ) → (Diu, φ)L2(UT )

for any given φ ∈ L2(UT ). Thus u ∈ H1(UT ) and Dtu,Diu are its weak derivatives.
Step 5: Passage to the limit in the weak formulation. Testing (5.6) against any

vm(t, x) =
m∑
k=1

vm:k(t)φk(x), m ≤ N,

with vm:k ∈ C1([0, T ]) and vm:k(T ) = 0, and integrating over (0, T ), we obtain, by integration
by parts in time,∫
UT

f vm =

∫
UT

(
−∂tuN ∂tvm+aij∂iuN ∂jvm+bi∂iuN vm+b ∂tuN vm+c uN vm

)
−
∫
Σ0

ψN
1 vm.

Using the weak convergence uN ⇀ u in H1(UT ) and ψN
1 → ψ1 in L2(U), we deduce∫

UT

f vm =

∫
UT

(
−Dtu ∂tvm + aijDiu ∂jvm + biDiu vm + bDtu vm + c u vm

)
−
∫
Σ0

ψ1vm.

We now identify the class of admissible test functions. The functions vm of the above form
are dense in

{v ∈ H1(UT ) : v|ΣT∪∂∗UT
= 0},

where ∂∗UT := (0, T )× ∂U . Indeed, the density follows from the density of the linear span of
(φk) in H1

0 (U).
We prove this last fact. Let V be the closed linear span of {φk}k≥1 in H1

0 (U) and suppose,
for contradiction, that V ̸= H1

0 (U). Then E := V ⊥ ⊂ H1
0 (U) is a non-trivial closed subspace.
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Because (µ−∆)−1 is self-adjoint and compact on H1
0 (U), it leaves V and E invariant (one

checks that (µ−∆)−1(V ) ⊂ V , which implies the same for the orthogonal complement E),
and its restriction

K := (µ−∆)−1
|E : E → E

is again compact, self-adjoint and non-zero. A basic spectral property of compact self-adjoint
operators states that any non-zero compact self-adjoint operator K on a Hilbert space has
at least one non-zero eigenvalue. This contradicts the fact that, by construction, K has no
eigenvalues on E. Hence V = H1

0 (U), i.e. (φk) is dense in H1
0 (U).

Thus, given any such v, there exists a sequence (vm) with vm → v in H1(UT ). Since the
trace operator is continuous from H1(UT ) to L2(Σ0), this implies vm|Σ0 → v|Σ0 in L2(Σ0) and
therefore ∫

Σ0

ψ1vm →
∫
Σ0

ψ1v.

Passing to the limit in the identity above then yields exactly the weak formulation (5.3) for all
v ∈ H1(UT ) with v|ΣT∪∂∗UT

= 0.
Step 6: Initial and boundary conditions. We already know that

uN(0, x) =
N∑
k=1

(ψ0, φk)L2(U)φk(x) =: ψN
0 (x).

Since (φk) is an orthonormal basis of L2(U), Parseval’s identity gives ψN
0 → ψ0 in L2(U).

Moreover, using −∆φk = λkφk and the orthonormality of (∇φk/
√
λk) in L2(U), one checks

that ψN
0 → ψ0 in H1

0 (U). Since the trace operator H1(UT ) → L2(U) is continuous, the
weak convergence uN ⇀ u in H1(UT ) implies uN(0, ·)⇀ u(0, ·) in L2(U). On the other hand,
uN(0, ·) = ψN

0 → ψ0 strongly (hence weakly) in L2(U), so the weak limit must be u(0, ·) = ψ0.
For the boundary condition, note that each uN vanishes on ∂∗UT . The set

V := {w ∈ H1(UT ) : w|∂∗UT
= 0}

is a closed linear subspace of H1(UT ), hence weakly closed. Since uN ∈ V for all N and
uN ⇀ u in H1(UT ), the limit u also belongs to V , i.e. u|∂∗UT

= 0. This completes the
proof.

Remark 5.9. In fact the energy estimate (5.7) established in the proof shows, by keeping the
term E[uN ](T

′), T ′ ∈ (0, T ), and taking the limit N → ∞, that

E[u](T ′) + ∥u∥2H1
t,x(UT ′ )

≤ C(E[u](0) + ∥f∥2L2(UT ′ )),

so that the solution constructed in the theorem satisfies u ∈ L∞(0, T ;H1(U)) and ∂tu ∈
L∞(0, T ;L2(U)). Note that although the energy E[u](t) on each time slice is bounded, it is
not always continuous for such weak solutions merely in H1(UT ).

5.2.5 Hyperbolic regularity theory

Just like for elliptic PDEs, we want to prove that the weak solutions we have constructed are
more regular and in fact classical (strong) solutions when the coefficients and data are regular
enough. Once more the core idea is best explained on the wave equation □u = ∂2ttu−∆xu = f
in UT with f , ψ0, ψ1 smooth. The previous theorems 5.6-5.8 show there a unique solution
u ∈ H1(UT ) with the boundary conditions u|Σ0 = ψ0, (∂tu)|Σ0 = ψ1 and u|∂∗UT

= 0. Let us
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argue a priori, i.e. we assume that u is smooth and we try to establish an estimate on higher-
order derivatives. Then w := ∂tu satisfies □w = ∂tf in UT with the boundary conditions
w|Σ0 = (∂tu)|Σ0 = ψ1, (∂tw)|Σ0 = (∂2ttu)|Σ0 = (∆xu)|Σ0 + (∂tf)|Σ0 = ∆xψ0 + (∂tf)|Σ0 and
w|∂∗UT

= 0. Then the same energy estimate that we used in the last proof (of existence)
shows E[w](T ′) + ∥w∥2

H1
t,x(UT ′ )

≲ E[w](0) + ∥∂tf∥2L2(UT ′ )
for T ′ ∈ (0, T ), which proves that

∂tu = w ∈ H1
t,x(UT ). Meanwhile ∆xu = ∂tu − f ∈ L2(UT ) implies by the basic ellipticity

estimate that ∂2xixj
u ∈ L2(UT ) for all i, j. So finally u ∈ H2(UT ), and by induction we can

bound similarly higher-order derivatives.

Theorem 5.10 (Hyperbolic regularity). Let T > 0 and k ≥ 2 be an integer, and let U ⊂ Rn be
open, bounded, with ∂U ∈ Ck. Set UT = (0, T )× U .

Assume a, b, c ∈ Ck(UT ) and

∂ℓtf ∈ L∞(0, T ;Hk−1−ℓ(U)
)

for all ℓ = 0, . . . , k − 1.

Let u ∈ H1(UT ) be the (unique) weak solution to (5.2) given by Theorem 5.8, with initial data
u(0, ·) = ψ0, and ∂tu(0, ·) = ψ1. Suppose in addition that the time traces of u at t = 0 satisfy

∂ℓtu(0, ·) ∈ H1
0 (U) for ℓ = 0, . . . , k − 1, ∂kt u(0, ·) ∈ L2(U).

Then ∂ℓtu ∈ L∞(0, T ;Hk−ℓ(U)
)

for every ℓ = 0, . . . , k (in particular u ∈ Hk(UT )).
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Proof of Theorem 5.10. Step 1: Reduction to the case k = 2. Under our assumptions on L and U ,
the eigenfunctions φk ∈ H1

0 (U) of the Dirichlet problem

Lφk = λkφk in U, φk = 0 on ∂U,

are in Hk(U) by Theorems 4.23–4.26. For general k ≥ 2, differentiating the equation

∂ttu+ Lu = f

k−2 times in t shows that each ∂mt u (m ≤ k−2) solves a hyperbolic equation of the same type,
with coefficients still in Ck−m and right-hand side involving ∂ℓtf and lower-order derivatives
of u, which satisfy the same form of assumptions. If we know the theorem for k = 2, we can
apply it successively to ∂mt u for m = 0, . . . , k − 2 and obtain the full statement. Hence it is
enough to prove the case k = 2.

Step 2: Galerkin approximation and time regularity. In the Galerkin scheme of the previous
proof, we write

uN(t, x) =
N∑
k=1

uN :k(t)φk(x),

and the coefficients uN :k solve a linear system of second-order ODEs

üN :k(t) +
N∑
ℓ=1

AN :kℓ(t)uN :ℓ(t) +
N∑
ℓ=1

BN :kℓ(t)u̇N :ℓ(t) = CN :k(t).

Because a, b, c ∈ C2(UT ) and f has the assumed time-regularity, the coefficientsAN :kℓ(t), BN :kℓ(t)
are C2 and CN :k(t) is C1 in t. Standard ODE theory then implies (uN :k(t))

N
k=1 ∈ C3 in t. We

can therefore differentiate this system in t; denoting vN := ∂tuN , the differentiated system
is the Galerkin approximation for vN , which solves the linearised equation for ∂tu (when
projected against φk from k = 1, . . . , N ).

Step 3: Energy estimate for ∂tuN . We now perform the energy estimate on the differentiated
system. Testing the equation for vN by ∂2ttuN :k(t) e

−λt, integrating over (0, T ′)× U for T ′ ∈
(0, T ), and summing over k = 1, . . . , N , we obtain

E[∂tuN ](T
′) + ∥∂tuN∥2H1

t,x(UT ′ )
≤ C

(
E[∂tuN ](0) + E[uN ](0) + ∥f∥2H1(UT ′ ) + ∥∂tf∥2L2(UT ′ )

)
for some constant C > 0 independent of N .

Step 4: Initial energies and elliptic regularity. At t = 0, the functions uN(0), ∂tuN(0) and
∂ttuN(0) are the L2-orthogonal projections of ψ0, ψ1, ψ2 onto span{φ1, . . . , φN}. Therefore

∥uN(0)∥H1(U) ≤ ∥ψ0∥H1(U), ∥∂tuN(0)∥H1(U) ≤ ∥ψ1∥H1(U), ∥∂ttuN(0)∥L2(U) ≤ ∥ψ2∥L2(U),

so E[∂tuN ](0) and E[uN ](0) are bounded uniformly in N . Letting T ′ → T in the estimate of
Step 3, we obtain uniform bounds

∂2ttuN , ∂
2
tiuN ∈ L2(UT ) (i = 1, . . . , n).

From the equation ∂2ttuN + LuN = f it follows that aij∂2ijuN ∈ L2(UT ) uniformly in N . Since
L is uniformly elliptic in x with C2 coefficients and uN(t, ·) ∈ H1

0 (U), we can apply for almost
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every t Theorems 4.23–4.26 to L(t, ·)uN(t, ·) = f(t, ·)− ∂tuN(t, ·) ∈ L2(U) with the Dirichlet
boundary condition, thus we get

uN(t, ·) ∈ H2(U),

with an estimate independent of N and t. Integrating in time, we see that (uN) is bounded in
H2(UT ) uniformly in N , and hence u ∈ H2(UT ) in the limit N → ∞.

Step 5: L∞-in-time bounds and passage to the limit. We know that u ∈ L2(0, T ;H2(U)) and
we want to promote it to u ∈ L∞(0, T ;H2(U)). The energy estimates for uN and ∂tuN also
give, for a constant C independent of N ,

∥uN∥L∞(0,T ;H2(U)) + ∥∂tuN∥L∞(0,T ;H1(U)) + ∥∂2ttuN∥L∞(0,T ;L2(U)) ≤ C.

By weak compactness, up to a subsequence we have

uN ⇀ u in L2(0, T ;H2(U)), ∂tuN ⇀ ∂tu in L2(0, T ;H1(U)),

and similarly for ∂ttuN in L2(0, T ;L2(U)). Moreover, for a.e. t we have uN(t) ⇀ u(t) in
H2(U), so by weak lower semicontinuity

∥u(t)∥2H2(U) ≤ lim inf
N→∞

∥uN(t)∥2H2(U).

If we set gN(t) := ∥uN(t)∥2H2(U), the uniform energy bound gives gN ∈ L∞(0, T ) with
∥gN∥L∞ ≤ C2, and Fatou’s lemma yields∫ T

0

∥u(t)∥2H2(U) dt ≤
∫ T

0

lim inf
N→∞

gN(t) dt ≤ lim inf
N→∞

∫ T

0

gN(t) dt ≤ TC2.

Thus u inherits the same type of bound as the uN ; the same argument applies to ∂tu and ∂ttu.
Together with the pointwise-in-time energy estimate and weak lower semicontinuity of the
energy, this shows that

u ∈ L∞(0, T ;H2(U)), ∂tu ∈ L∞(0, T ;H1(U)), ∂2ttu ∈ L∞(0, T ;L2(U)).

Remark 5.11. 1. In particular, the theorem is a propagation of regularity result: for k = 2 it
says that if the initial data are alreadyH2 (in fact the compatibility condition ψ2+Lψ0 =
f(0, ·) in L2(U) forces ψ0 ∈ H2(U) by elliptic regularity), then the solution remains
H2; there is no new smoothing coming from the time evolution. This lack of smoothing
is already clear in the 1D wave equation on R (for simplicity, but the same is true on
bounded intervals using Fourier expansion),

∂ttu− ∂xxu = 0, u(0, x) = u0(x), ∂tu(0, x) = 0.

By d’Alembert’s formula (see Exercise 4.12) we have

u(t, x) = 1
2
u0(x+ t) + 1

2
u0(x− t),

so the spatial regularity of u(t, ·) is exactly the same as that of u0, for all t. For instance,
if u0 ∈ H1(R) \H2(R), then u(t, ·) ∈ H1(R) \H2(R) for every t.
With the same example but with f ̸≡ 0 and u0 ≡ 0 one can check that u gains one space
derivative with respect to f and no gain in t (which is what the statement of our theorem
tells us in this regard).
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2. To make a connection again with the vector fields vector, in the proof of uniqueness
we have “almost commuted” the equation (in weak form) with ∂−1

t (with an exponential
weight in time), in the proof of existence we have “almost commuted” the equation (in
discretised form) with ∂t (with an exponential weight in time), and in this higher-order
regularity estimate we have “almost commuted” the equation (in discretised form) with
∂2tt (with an exponential weight in time) and then used the PDE itself to recover the other
higher-order derivatives.

3. When k = 2 we obtain the PDE as an equality almost everywhere. When k > 2 + n/2,
by Sobolev inequalities, we obtain the PDE in the classical sense everywhere (check it).
When k = ∞, we obtain that the solution u is smooth.

4. The case k = 1 corresponds to the previous theorem of existence for which the energy
E[u](t) is bounded on each time slice but not necessearily continuous as a function
of t. However as soon as k ≥ 2, the bound ∂tu ∈ L∞(0, T ;H1(U)) implies u ∈
C0(0, T ;H1(U)) (check it). When the latter continuity is true we say that u belongs to
the energy class (that is the class of solutions for which the energy is well-defined and
continuous in time).

5.2.6 Domain of dependence

A crucial feature of hyperbolic equations is the finite speed of propagation of information.
For instance, sound waves travel at a certain maximal speed, depending on the medium,
earthquakes waves travel at a certain maximal speeds, depending on the medium and different
for the longitudinal and transversal waves, and electromagnetic waves travel at the speed of
light. When considering the hyperbolic PDEs of general relativity, the feature implies the
famous principle that “nothing can travel faster than the speed of light”. Let us translate all
this into a precise mathematical estimate. We need a concept of hypersurface never pointing
to a direction that would entail a speed faster than allowed by the equation.

Definition 5.12. Given V ⊂ Rn open bounded and τ ∈ C∞(V ) so that τ|V > 0 and τ|∂V = 0,
we denote the graph of t = τ(x) by S := {(τ(x), x) : x ∈ V } ⊂ Rn+1 hypersurface and the
enclosed domain D := {(t, x) : x ∈ V, t ∈ (0, τ(x))}. We then say that S is spacelike for
the hyperbolic equation ∂2ttu+ Lu = f defined in (5.2) if

aij(x)∂xi
τ(x)∂xj

τ(x) < 1

for all x ∈ V , and if so we say that D is a domain of dependence for V .

Theorem 5.13. Given T > 0, U ⊂ Rn open bounded with ∂U ∈ C1, UT = (0, T ) × U ,
f ∈ H1(UT ), ψ0 ∈ H1(U), ψ1 ∈ L2(U), a, ∂ta, b,∇xb, c ∈ L∞(UT ), u ∈ H1(UT ) a weak
solution to (5.2) according to Definition 5.4, and V ⊂ U open bounded with ∂V ∈ C1 and
τ ∈ C∞(V ) so that τ(V ) ⊂ (0, T ) and τ|∂V = 0 with S := {(τ(x), x) : x ∈ V } ⊂ Rn+1

spacelike, and D := {(t, x) : x ∈ V, t ∈ (0, τ(x))}.
Then u|D only depends on (ψ0)|V , (ψ1)|V and f|V : in particular if ψ0, ψ1 and f are vanishing in
V , then u = 0 in D.

Proof of Theorem 5.13. The proof is similar to that of uniqueness of weak solution (Theorem 5.6),
except that we slightly modify the test function v to make it vanishes outside D. Indeed by
linearity, it is enough to prove that u|D = 0 as soon as (ψ0)|V = (ψ1)|V = f|V = 0 (we
have taken f in H1(UT ) in order to be able to define its trace at t = 0). We then define
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v(t, x) :=
∫ τ(x)

t
u(s, x)e−λs ds for (t, x) ∈ D and v(t, x) = 0 in UT \ D. We then have

∂tv = −ue−λt for (t, x) ∈ D and v = 0 elsewhere, and v ∈ H1(UT ) with v = 0 on ΣT ∪ ∂∗UT ;
moreover v = 0 on Σ0 since the data are zero on V and on S, so in fact v ∈ H1

0 (D). Performing
the same estimate as in Theorem 5.6 we obtain

1

2

∫
D
∂t
[
u2e−λt − aij(∂iv)(∂jv)e

λt − v2eλt
]
+
λ

2

∫
D

[
u2e−λt + aij(∂iv)(∂jv)e

λt + v2eλt
]
(5.8)

≤ C

(∫
D

[
u2e−λt + v2eλt + θ |∇xv|2 eλt

])
.

The only new point with respect to the proof of uniqueness is the treatment of the boundary
term. We now compute the time–boundary contribution coming from

A :=
1

2

∫
D
∂t

(
u2e−λt − aij(∂iv)(∂jv)e

λt − v2eλt
)
dt dx.

By Fubini’s theorem D = {(t, x) : x ∈ V, 0 < t < τ(x)}, we can write

2A =

∫
V

∫ τ(x)

0

∂t

(
u2e−λt − aij(∂iv)(∂jv)e

λt − v2eλt
)
dt dx

=

∫
V

[
u2e−λt − aij(∂iv)(∂jv)e

λt − v2eλt
]t=τ(x)

t=0
dx

=

∫
V

(
u2(τ(x), x)e−λτ(x) − aij(∂iv)(∂jv)(τ(x), x)e

λτ(x) − v2(τ(x), x)eλτ(x)

− u2(0, x) + aij(∂iv)(∂jv)(0, x) + v2(0, x)
)
dx.

By construction of v we have v(0, x) = 0 and v(τ(x), x) = 0 for all x ∈ V, hence the terms
involving v2 vanish at both t = 0 and t = τ(x), and do not contribute to the boundary integral.
What remains is a contribution involving u(τ(x), x) and ∇xv(τ(x), x).

On the hypersurface S = {(t, x) : t = τ(x)} we have v(τ(x), x) = 0 for all x ∈ V .
Differentiating this identity with respect to xi and using the chain rule gives

0 = ∂i
(
v(τ(x), x)

)
= (∂iτ)(x) (∂tv)(τ(x), x) + (∂iv)(τ(x), x).

Hence,

(∂iv)(τ(x), x) = −(∂iτ)(x) (∂tv)(τ(x), x) = (∂iτ)(x)u(τ(x), x) e
−λτ(x).

Substituting this expression for ∂iv(τ(x), x) into the boundary term yields
1

2

∫
V

u2(τ(x), x) e−λτ(x)
[
1− aij(x)(∂iτ)(x)(∂jτ)(x)

]
dx.

By the spacelike condition

aij(x)(∂iτ)(x)(∂jτ)(x) < 1 for all x ∈ V,

the bracket is nonnegative, and therefore the whole boundary term is nonnegative. Combining
this in (5.8) and choosing λ > 0 large enough to absorb the right-hand side, we obtain∫

D
u2e−λt = 0,

which implies u = 0 in D and completes the proof.

78



5.2 The IBVP for second-order PDEs 5 Hyperbolicity

LECTURE 24
Remark 5.14. 1. We say that the equation has propagation speed at most c ≥ 0 if, for every

x0 ∈ Rn, R > 0 and every solution u with

suppψ0, suppψ1 ⊂ B(x0, R),

one has
suppu(t, ·) ⊂ B(x0, R + c|t|) for all t ∈ R.

The maximal propagation speed is the infimum of all such c.
Assume now that the principal coefficients of L satisfy

aij(x) ξiξj ≤ ν|ξ|2 for all x ∈ U, ξ ∈ Rn,

for some constant ν > 0. Then the maximal propagation speed is at most
√
ν.

Indeed, fix x0 ∈ Rn and R > 0, and assume suppψ0, suppψ1 ⊂ B(x0, R). Let c >
√
ν

and take t > 0 and x ∈ Rn with |x− x0| > R + ct. Set

d := dist
(
x,B(x0, R)

)
= |x− x0| −R > ct.

Choose Λ with
1

c
< Λ < ν−1/2.

Then t/Λ < ct < d, so we can pick r such that t/Λ < r < d and set V := B(x, r). Thus
V ∩B(x0, R) = ∅, so the initial data (assume source f ≡ 0 for simplicity) vanish on V .
Choose 0 < ε < r so that

t

r − ε
< Λ,

and then pick t1 > t so close to t that

t1
r − ε

< Λ

still holds. On V first consider the cone

τ0(y) :=
t1
r

(
r − |y − x|

)
, y ∈ V,

which satisfies τ0 > 0 in V , τ0 = 0 on ∂V , and τ0(x) = t1 > t, but is not smooth at
y = x. We can make it smooth by choosing θ ∈ C∞([0, r]) such that

θ(0) = 0, θ(r) = r, θ(s) = s for s ≥ ε, 0 ≤ θ′(s) ≤ r

r − ε
for all s ∈ [0, r].

Define τ ∈ C∞(V ) by

τ(y) := t1

(
1− θ(|y − x|)

r

)
, y ∈ V.

Then τ > 0 in V , τ = 0 on ∂V , and τ(x) = t1 > t. Moreover, for y ̸= x we have

∇yτ(y) = −t1
r
θ′(|y − x|) y − x

|y − x| , |∇yτ(y)| =
t1
r
θ′(|y − x|) ≤ t1

r − ε
< Λ.
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Hence, for all y ∈ V ,

aij(y) ∂iτ(y) ∂jτ(y) ≤ ν|∇τ(y)|2 ≤ νΛ2 < 1.

Thus the hypersurface
S = {(s, y) : s = τ(y)}

is spacelike and
Dτ := {(s, y) : y ∈ V, 0 < s < τ(y)}

is a domain of dependence in the sense of Theorem 5.13. Since the data vanish on V ,
Theorem 5.13 implies u = 0 in Dτ . Moreover, x ∈ V and 0 < t < τ(x) = t1, so
(t, x) ∈ Dτ , and hence u(t, x) = 0.
Therefore u(t, x) = 0 whenever t > 0 and |x− x0| > R + ct. As c >

√
ν was arbitrary,

we conclude that

suppu(t, ·) ⊂ B
(
x0, R +

√
ν t
)

for all t ≥ 0,

i.e. the maximal propagation speed is at most
√
ν.

5.3 First-order hyperbolic PDEs and the method of characteristics
The previous discussion about finite speed of propagation shows that there is a local “causal
cone” for the operator: disturbances at a point (t0, x0) cannot influence points outside a cone
whose boundary is given (in the principal part) by the vanishing of the symbol

p(x, τ, ξ) = −τ 2 + aij(x)ξiξj.

More precisely, the spacelike condition used in Theorem 5.13 reads p(x, 1,−∇τ) < 0, and
its limiting case p = 0 describes the characteristic directions. After normalising τ = 1, this
corresponds to directions ξ satisfying aij(t, x) ξiξj = 1, which generate the characteristic
cones.

In the simplest case of the constant-coefficient wave equation, we proved that a perturbation
at (0, x0) in the data can only influence points (t, x) with |x− x0| ≤ |t|. Thus the boundary of
the region where influence may occur is {(t, x) : t > 0, |x− x0| = t}, the “light cone” with
vertex at (0, x0), generated by straight rays x(t) = x0 + tσ with σ ∈ Sn−1.

This can be related to a formal factorisation of the wave operator

□ = ∂tt −∆x =
(
∂t + i

√
−∆x

)(
∂t − i

√
−∆x

)
,

where each factor corresponds formally to propagation along one family of characteristics.
The operators

√−∆x are non-local pseudo-differential operators, and we do not study them
here. However, in dimension n = 1 the situation is more explicit: information propagates
along the lines x0 ± t, which are called the bicharacteristics of the PDE. They correspond
to the local factorisation ∂tt − ∂xx = (∂t − ∂x)(∂t + ∂x) and to the rewriting of the PDE
as a first-order (system of) transport equations ∂tv + ∂xv = 0 for v := ∂tu − ∂xu. In
this section, we focus on the simpler case of a single scalar transport equation, for which
only one characteristic trajectory emanates from each point, and we describe the method of
characteristics for constructing solutions, strong and weak. This is the simplest way to see
why nonlinear hyperbolic PDEs can develop singularities.
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5.3.1 Some examples

Consider for c ∈ R the scalar linear 1d transport equation with constant coefficient:{
∂tu+ c ∂xu = 0, t ∈ R, x ∈ R,
u(0, x) = u0(x), x ∈ R.

(5.9)

It models transport of particles (or molecules, or cars, or thingies. . . ) on a line with algebraic
velocity c, and u is the density (or velocity, or else. . . ) of such thingies at time t and point x
along the line. It is easy to check that given u0 ∈ C1(R) there is a unique classical solution
u ∈ C1(R2) given by u(t, x) = u0(x− ct). One can also solve the equation with a source term
f by the Duhamel principle. Also, as we shall see, given u0 ∈ L∞(R), there is a unique weak
solution u ∈ L∞(R2) given again by u(t, x) = u0(x− ct) (we will do it in the more general
case of variable coefficients).

When c = c(x), we obtain a transport equation with variable transport velocity. When
c = c[u] depends on the solution, we obtain a nonlinear transport equation. The Burgers
equation (1948) is the Euler equation in 1D for the velocity field u of the fluid when the
density is constant (the nonlinearity is caused by the convection term):

∂tu+ u∂xu = ∂tu+ ∂x

(
u2

2

)
= 0. (5.10)

The Burgers equation (1948) is the one-dimensional Euler equation for the velocity field
u of a fluid with constant density; its nonlinearity comes from the convection term:

∂tu+ u ∂xu = ∂tu+ ∂x

(
u2

2

)
= 0. (5.11)

More generally, equations of the form ∂tu + ∂x
(
C(u)u

)
= 0 with non-constant C =

C(u(t, x)) are a standard toy model for nonlinear transport. As an example, consider a one-
lane road with no entry or exit. Assume the typical car length is much smaller than the
observation scale, so that traffic can be modeled as a “continuum”. Let u(t, x) be the car density,
v(t, x) the velocity, and q(t, x) the flux at (t, x) (the rate at which cars pass to point x at time
t, in average). The number of cars in [x, x+ δx] at time t is u(t, x) δx, and at time t+ δt it is
u(t+ δt, x) δx. By conservation of cars, this change equals the inflow at x minus the outflow
at x+ δx between times t and t+ δt:

u(t+ δt, x)− u(t, x)

δt
+
q(t, x+ δx)− q(t, x)

δx
= 0.

Letting δt, δx→ 0 yields ∂tu+ ∂xq = 0. This continuity equation expresses conservation
of the number of cars and is a prototype of conservation laws, a subclass of hyperbolic
equations.
To close the model, we need a state equation relating q to u. Here it is given by driver
behavior: we write q(t, x) = u(t, x)C(t, x) (number of cars crossing x per unit time is density
of cars times speed C), and assume C = C(u(t, x)), i.e. the mean speed depends only on
the locally observed density. The function C(r) is determined experimentally; typically it
decreases, as the speed is higher when there is little traffic and decreases as the density of cars
increases. Even such a simple PDE exhibits formation of discontinuities, which correspond to
the formation of traffic jams.
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5.3.2 The linear scalar transport equation with variable coefficients

Given u0 ∈ C1(Rn), we consider the following equation{
∂tu(t, x) + F (t, x) · ∇xu(t, x) = 0, t ∈ R, x ∈ Rn

u(t = 0, x) = u0(x), x ∈ Rn.
(5.12)

for a variable propagation speed given by a vector field F (t, x) ∈ Rn. We assume F ∈
C1(R× Rd), and |∇xF (t, x)| ≤ L for all t, x ∈ R2, for some constant L > 0 (the assumption
on the gradient could be replaced in the sequel by F (t, x) ≤ L (1 + |x|) for all t, x ∈ R2).

Definition 5.15. For each s ∈ R and x ∈ Rn, the characteristic of the transport equa-
tion (5.12) passing through (s, x) is the unique solution

y : t 7→ y(t) ∈ Rn

of the ODE
ẏ(t) = F (t, y(t)), y(s) = x.

We denote this solution by y(t) = Zs,t(x), and call the family (Zs,t)s,t∈R the flow of character-
istics.

We know from the ODE theory, since we are assuming in particular F continuous in t and
globally Lipschitz in x, these trajectories exist for all s, t ≥ 0 and all starting point x ∈ Rn.
For each s, t ∈ R the map

Zs,t : Rn → Rn, x 7→ Zs,t(x)

is a C1–bijection with inverse Zt,s, hence a C1–diffeomorphism. In particular, trajectories
cannot cross: if Zs,t(x1) = Zs,t(x2), uniqueness backward in time implies x1 = x2. Although
there is in general no semigroup structure (i.e. one cannot writeZs,t = St−s for a one-parameter
family (Sτ )τ∈R with S0 = Id and Sτ2 ◦ Sτ1 = Sτ1+τ2 , since F depends on t), the flow still
satisfies

Zt1,t2 ◦ Zt0,t1 = Zt0,t2 for all t0, t1, t2 ∈ R,

again by uniqueness of solutions.

Theorem 5.16. Given u0 ∈ C1(Rn) and F ∈ C1(Rn+1) with bounded spatial gradient, the
Cauchy problem (5.12) admits a unique global classical solution u ∈ C1(Rn+1). Denoting by
(Zs,t)s,t∈R the flow generated by F , the solution is given in implicit form by

u
(
t, Z0,t(x)

)
= u0(x),

and equivalently in explicit form by

u(t, x) = u0
(
Zt,0(x)

)
, t ∈ R, x ∈ Rn.

Remark 5.17. The basic idea behind the theorem is that the solution is transported along the
characteristic trajectories, and hence remains constant on each curve t 7→ Z0,t(x). This method
of characteristics provides a concrete bridge between ODE and PDE theory, and shows in some
cases how to view a PDE as a continuum of ODEs.

More generally, for the inhomogeneous equation

∂tu(t, x) + F (t, x) · ∇xu(t, x) = f(t, x),
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with f ∈ C0(Rn+1), one has along characteristics d
dt
u
(
t, Z0,t(x)

)
= f

(
t, Z0,t(x)

)
, so that by

Duhamel’s principle

u
(
t, Z0,t(x)

)
= u0(x) +

∫ t

0

f
(
τ, Z0,τ (x)

)
dτ,

or equivalently

u(t, x) = u0
(
Zt,0(x)

)
+

∫ t

0

f
(
τ, Zt,τ (x)

)
dτ.

Proof of Theorem 5.16. By uniqueness, any u ∈ C1 solution to (5.12) satisfies by chain rule

d

dt
[u (t, Z0,t(x))] = (∂tu) (t, Z0,t(x)) + (∇xu) (t, Z0,t(x)) · ∂tZ0,t(x)

= (∂tu+ F · ∇xu) (t, Z0,t(x)) = 0,

which shows u(t, Z0,t(x)) = u(0, Z0,0(x)) = u0(x) since Z0,0(x) = x and determines the
solution since Z0,t is a C1-diffeomorphism for any t ∈ R. To prove existence, consider
w(t, x) := u0 (Zt,0(x)) for t, x ∈ R, which is C1 in both variables by composition, and satisfies
the initial condition since Z0,0 = Id. It also satisfiesw(t, Z0,t(x)) = u0 (Zt,0 ◦ Z0,t(x)) = u0(x).
By differentiating in time this last equation one gets by chain rule (∂tw+F ·∇w)(t, Z0,t(x)) = 0
for all t, x ∈ R and every y ∈ Rn can be written as y = Z0,t(x) since Z0,t : Rn → Rn is
bijective for any t ∈ R, thus we conclude that ∂tw + F · ∇w = 0 everywhere, so u = w is a
solution.

To introduce a notion of weak solution, we restrict to the case of F in divergence-free
vector fields F , this makes the equation in a form of conservation laws. If u and F are smooth,
then ∂tu + F · ∇xu = 0 is equivalent to ∂tu + ∇x · (Fu) = 0 whenever ∇x · F ≡ 0. This
motivates restricting to divergence-free vector fields F and taking the weak formulation of
the conservative equation.

Definition 5.18. Let u0 ∈ L∞(Rn) and F ∈ C1(Rn+1) with sup(t,x)∈Rn+1 |∇xF (t, x)| < ∞
and zero divergence ∇x · F ≡ 0. A weak L∞ solution to (5.12) is a function u ∈ L∞(R× Rn)
such that for all φ ∈ C1

c (R+ ×Rn), (we use R+ = [0,∞), so the test function can be non-zero
at the (0, x))∫

R+

∫
Rn

u(t, x)
[
∂tφ(t, x) + F (t, x) · ∇xφ(t, x)

]
dt dx+

∫
Rn

u0(x)φ(0, x) dx = 0. (5.13)

Theorem 5.19 (Weak-strong uniqueness principle). Let u0 ∈ C1(Rn) ∩ L∞(Rn) and F ∈
C1(Rn+1) with the assumptions above. Any classical solution to (5.12) is also a weak solution,
and any weak solution that is C1 is also a classical solution.

Proof of Theorem 5.19. A classical solution u(t, x) = u0(Zt,0(x)) ∈ L∞(Rn+1) by construction,
and given φ ∈ C1

c (Rn+1) we recover the weak formulation by integrating the PDE against φ
and integrating by parts (check it). If u ∈ C1(Rn+1) ∩ L∞(Rn+1) is a weak solution, we first
consider (5.13) with test function φ ∈ C1

c (R∗ × Rn) (who support avoids the initial time) and
compute by integration by parts (note all integration by parts use ∇x · F = 0)

0 =

∫
Rn+1

u
(
∂tφ+ F · ∇xφ

)
dt dx = −

∫
Rn+1

(
∂tu+ F · ∇xu

)
φ dt dx
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which implies that the PDE holds pointwise. Second we consider φ ∈ C1
c (Rn+1) and compute∫

Rn (u0(x)− u(0, x))φ(0, x) dx = 0. Since it is true for any φ(0, x) ∈ C1(Rn) we deduce that
the initial condition is satisfied.

Theorem 5.20. Let u0 ∈ L∞(Rn) and F ∈ C1(Rn+1) with the assumptions as in the definition
of weak solution. There is a unique global weak solution u ∈ L∞(R× Rn) to (5.12), given again
by u(t, x) = u0 (Zt,0(x)).

Proof of Theorem 5.20. To prove existence, we define u(t, x) := u0(Zt,0(x)) ∈ L∞(Rn+1), then
given φ ∈ C1

c (Rn+1) we compute∫
Rn+1

u(t, x)
(
∂tφ+ F · ∇xφ

)
dt dx =

∫
Rn+1

u0(Zt,0(x))
[
∂tφ+ F · ∇xφ

]
dt dx

=

∫
Rn+1

u0(X)
[
∂tφ(t, Z0,t(X)) + F (t, Z0,t(X)) · ∂xφ(t, Z0,t(X))

]
dt dX

=

∫
Rn+1

u0(X)
d

dt

[
φ(t, Z0,t(X))

]
dt dX = −

∫
Rn

u0(X)φ(0, X) dX

where we have used the change of variable X = Zt,0(x), the chain rule d
dt

[
φ(t, Z0,t(X))

]
=

∂tφ(t, Z0,t(X))+F ·∇xφ(t, Z0,t(X)), and an integration by parts in t (keeping X fixed). This
proves that u satisfies the weak formulation. To prove uniqueness, it is enough by linearity to
prove that the weak solution u with zero initial data u0 = 0 must be the zero solution. We
follow the dual method. To prove that u = 0, it is enough to prove that for any ψ ∈ C1

c (Rn+1),
there exists φ ∈ C1

c (Rn+1) so that ∂tφ+ F · ∇xφ = ψ for t ≥ 0, then the weak formulation
on u (with zero initial data) implies

∫
R+×Rn uψ = 0, and u = 0 on t ≥ 0 (and a symmetric

argument proves u = 0 on t ≤ 0). To prove the claim, we use the proof of existence of classical
solutions with a source term and define, for t ≥ 0 and given ψ ∈ C1

c (Rn+1),

φ(t, x) := φ0(Zt,0(x)) +

∫ t

0

ψ(s, Zt,s(x)) ds =

∫ t

T

ψ(s, Zt,s(x)) ds

with the choice of initial data φ0(x) := −
∫ T

0
ψ(s, Z0,s(x)) ds. Since ψ is compactly supported,

there exist T > 0 andR > 0 such that suppψ ⊂ [0, T ]×BR(0). Moreover, since F is bounded
on [0, T ]× Rn, say |F (t, x)| ≤M , the flow (Z0,s)s∈[0,T ] satisfies

|Z0,s(x)− x| =
∣∣∣∫ s

0

F
(
τ, Z0,τ (x)

)
dτ
∣∣∣ ≤Ms ≤MT.

If we chooseR′ := R+MT , then |x| ≥ R′ implies |Z0,s(x)| ≥ |x|−MT ≥ R for all s ∈ [0, T ],
hence Z0,s(x) /∈ BR(0). In particular, ψ

(
s, Z0,s(x)

)
= 0 for all s ∈ [0, T ] and |x| ≥ R′, and

thus
φ0(x) = −

∫ T

0

ψ
(
s, Z0,s(x)

)
ds = 0 for |x| ≥ R′,

so φ0 ∈ C1
c (Rn). Arguing as above with the uniform Lipschitz bounds for (Zt,s) on [0, T ]2 and

the spatial support of ψ, we also find R′′ > 0 such that φ(t, x) = 0 whenever |x| ≥ R′′. Hence
φ ∈ C1

c (R+ × Rn), as required.
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5.3.3 Nonlinear scalar monodimensional transport equations

Let us consider the nonlinear conservation law

∂tu+ ∂x
(
f(u)

)
= ∂tu+ f′(u) ∂xu = 0, (5.14)

where f is the flux and F (t, x) := f′(u(t, x)) is the speed of propagation. Given f ∈ C2(R)
with f′ ∈ L∞(R) and u0 ∈ C1(R), we can define the characteristic trajectories Zs,t(x) and the
notion of classical solution as above. Note however that the characteristics now solve

∂tZs,t(x) = F
(
t, Zs,t(x)

)
= f′

(
u(t, Zs,t(x))

)
, Zs,s(x) = x,

and therefore depend on the (unknown) solution u. This nonlinear loop means that the
characteristics cannot be computed independently of u, and so cannot be used a priori to
construct the solution as in the linear case.

The key a priori estimate is that, if u is a classical solution, then u stays constant along
characteristic trajectories:

d

dt

[
u(t, Z0,t(x))

]
= ∂tu

(
t, Z0,t(x)

)
+ ∂xu

(
t, Z0,t(x)

)
∂tZ0,t(x)

=
(
∂tu+ f′(u) ∂xu

)(
t, Z0,t(x)

)
= 0,

which implies
u
(
t, Z0,t(x)

)
= u

(
0, Z0,0(x)

)
= u0(x),

so the value of u along each characteristic is completely determined by the initial data. Hence
the characteristic equation becomes

∂tZ0,t(x) = f′
(
u(t, Z0,t(x))

)
= f′

(
u0(x)

)
,

and the characteristics are in fact straight lines:

Z0,t(x) = x+ t f′
(
u0(x)

)
.

When f′ ◦ u0 is decreasing, one checks (see Exercise 4.8) that there is a time

T∗ = −
[
min
x∈R

(
f′ ◦ u0

)′
(x)
]−1

x

t

u(t, x)

x

t

u(t, x)

T∗

Figure 1: Picture of characteristics in the cases f ′ ◦ u0 increasing and then decreasing.
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at which this classical solution breaks down: if the characteristic formula above were to remain
valid beyond T∗, two distinct initial points would be mapped to the same position, forcing u to
take two different values there. This corresponds to the formation of a shock (or caustic), and
the solution becomes discontinuous. To continue the solution beyond T∗ in a unique way, the
notion of weak L∞ solution is not sufficient (weak solutions are not unique); one introduces
instead entropy solutions in the sense of Kruzhkov (1970) (see Exercise 4.11).
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A Appendix on Hilbert spaces
Everything needed in the course on the theory of Banach and Hilbert spaces can be found
in the appendix D of the book by Evans. We give the proof of the Fredholm alternative for
compact operators.

Proof of Theorem 4.14 (Fredholm alternative for compact operators) (Not examinable). (i) WithT :=
Id − K , the unit ball of KerT is compact since u = Ku for u ∈ KerT and K is compact;
hence KerT is finite-dimensional.
(ii) Let (um) converge in ImT , so um = vm−Kvm for some (vm). Decompose vm = wm+hm
with wm ∈ KerT and hm ∈ (KerT )⊥. Since Twm = 0, we have um = hm −Khm. If (hm) is
bounded, compactness of K gives a subsequence (Khmk

) converging, hence (hmk
) converges

and u∞ ∈ ImT . If (hm) is unbounded, set h̃m = hm/∥hm∥; then h̃m − Kh̃m → 0, so a
subsequence converges to some h∞ ∈ KerT with ∥h∞∥ = 1, contradicting h̃m ∈ (KerT )⊥.
Thus ImT is closed.
(iii) Using (ii) and KerT ∗ = (ImT )⊥, we get ImT = (KerT ∗)⊥. The adjoint of a compact
operator is compact.
(iv) By (iii) it suffices to prove: if ImT = H , then KerT = {0}. If KerT k ⊊ KerT k+1 for all
k, one builds an orthonormal sequence (uk) with uk ∈ KerT k+1 ∩ (KerT k)⊥, and then (Kuk)
has no convergent subsequence, contradicting compactness. Hence KerT k0 = KerT k0+1 for
some k0; if k0 ≥ 1, pick 0 ̸= u ∈ KerT k0 \KerT k0−1, write u = Tv (surjectivity), and deduce
v ∈ KerT k0 , a contradiction. Thus KerT = {0}; the converse follows by applying the same
argument to K∗.
(v) Both kernels are finite-dimensional by (i). If one is trivial, (iii)–(iv) give that the other is
trivial. Otherwise, reduce dimensions one by one by adding a rank-one perturbation and use
induction.

The following is a list of results in the theory of Hilbert spaces that we used in the course.
• Riesz representation theorem. For any Hilbert space H and F ∈ H∗ there exists a unique
y ∈ H with F (v) = (v, y) for all v ∈ H , and ∥F∥ = ∥y∥. Hence H∗ ∼= H .

• Adjoint of a bounded operator. For bounded T : H → H there is a unique bounded T ∗

such that (Tu, v) = (u, T ∗v) for all u, v ∈ H . In particular (T ∗)∗ = T , ∥T ∗∥ = ∥T∥,
(TS)∗ = S∗T ∗, and (ImT )⊥ = KerT ∗ so ImT = (KerT ∗)⊥.

• Spectrum of compact operators. If K is compact on infinite dimensional H , every nonzero
spectral value is an eigenvalue of finite multiplicity and 0 is the only possible accumula-
tion point; if K is selfadjoint, all eigenvalues are real (and there is an orthonormal basis
of eigenvectors).

Also, in the theorem of existence of weak solutions for wave type equations we used the
following basic spectral property of compact self-adjoint operators.

Lemma A.1. Any non-zero compact self-adjoint operator K on a Hilbert space has at least one
non-zero eigenvalue. This contradicts the fact that by construction K has no eigenvalues on E.
This contradiction shows that V = H1

0 (U), i.e. (φk) is dense in H1
0 (U).

Proof. (Not examinable) First, one shows

∥K∥ = sup
∥u∥=1

(Ku, u),
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which follows from the polarization identity. Choose a sequence (um) with ∥um∥ = 1 such
that (Kum, um) → ∥K∥. Since K is compact, (Kum) has a convergent subsequence (still
denoted (Kum)), say Kum → v in the Hilbert space. Passing to the limit in

(Kum, um) → (v, u∗), for some weak limit u∗ of (um),

one checks that v = ∥K∥u∗ (or v = −∥K∥u∗), hence u∗ ̸= 0 and Ku∗ = ±∥K∥u∗. Thus
±∥K∥ is an eigenvalue of K ,
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