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1 Introduction

LECTURE 1

1 Introduction

Organization & Resources

Comments and corrections regarding these lecture notes are very welcome and may be sent to
ga482@cam. ac.uk.

Example classes. Four example classes, each lasting two hours, will be held during the
term. For each class I will upload in advance on Moodle a corresponding Problem Sheet with
exercises for you to solve and we will discuss them in the next example class. Furthermore,
you can hand in the exercises denoted with (x) to me for feedback.

Resources. Lecture notes will be made available on Moodle after each class. Recordings of
the lectures can also be found there; nevertheless, regular attendance is strongly recommended,
as it substantially improves comprehension and long-term retention. The course has previously
been taught by Clément Mouhot, Claude Warnick, and Zoe Wyatt, whose lecture notes are
available on their respective webpages.

These lecture notes make no claim of originality. They draw largely on past lecture notes,
particularly by C. Mouhot, for the same course.
The principal references are:

« L. C. Evans, Partial Differential Equations. Perhaps the most widely used reference and
the closest in spirit to this course.

« H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. A stan-
dard reference, particularly in France, emphasizing the connection between Functional
Analysis and PDEs, and developing Sobolev spaces from one to several dimensions.

« F. John, Partial Differential Equations. A classical source, especially for the Cauchy-
Kovalevskaya theorem and the method of characteristics.

« E. Lieb and M. Loss, Analysis.

« S. Klainerman, Partial Differential Equations (Princeton Companion to Mathematics). An
introductory essay offering a broad overview of the field of partial differential equations.

1.1 Overview of the course

Historical remarks. From infinitesimal calculus to PDEs The modern Analysis of Partial
Differential Equations (PDEs) originates in the late 17th century with Newton and Leibniz,
whose invention of differential calculus (building on earlier ideas such as Archimedes’ method
of exhaustion) marked the birth of modern physics. Calculus provided a universal language to
describe continuous change, allowing physical laws to be formulated as differential equations
(initially in a single variable). These equations could then be studied to make both qualitative
and quantitative predictions, laying the foundation of modern physics.

In the early 18th century, Euler, N. Bernoulli and d’Alembert, analyzed equations involving
differentiation with respect to several variables, motivated by fundamental physical problems
such as vibrating strings and fluid motion.
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The 19th century introduced rigorous analysis (e.g. with the works of Cauchy, Fourier and
G. Green) and 20th century saw the development of the frameworks of functional analysis and
distributions (e.g. with the works of Hilbert, Sobolev, Schwartz), which enabled the modern
study of well-posedness and regularity of solutions.’

Motivations for PDEs Many mathematical fields are fully connected with the study of
PDEs through the study of physical laws, as Fourier analysis (born to study the conduction of
heat), complex analysis (which depends on the Cauchy-Riemann equations), and functional
analysis (serving as setting for the modern approach to PDE, but also important in quantum
physics) and differential geometry (e.g. studying the Ricci flow as PDE has been fundamental
to solve the Poincaré conjecture).

The fundamental laws of physics typically express relations among quantities depending on
multiple independent variables and their partial derivatives. This naturally gives rise to PDEs
such as the Laplace, Euler, Navier—Stokes, Maxwell, Boltzmann, Einstein and Schrodinger.

The analysis of PDEs thus forms a vast and central discipline, standing at the crossroads of
physics and numerous branches of pure and applied mathematics.

Modern approach vs classical approach In this introductory course, we will focus on the
modern approach to PDE theory. This contrasts with the classical approach, which seeks explicit
solution formulas using methods such as Fourier series, integral transforms, and separation of
variables (as you may have encountered in undergraduate courses). While effective in specific
cases, these methods are not sufficient to understand PDEs within a broader framework.

The modern approach instead studies existence, uniqueness, and qualitative properties
of solutions by embedding the problem into a “suitable” function space equipped with the
right topology. Choosing this “suitable” space (and associated topology) is a crucial part of
the problem: it must be large enough to contain some solutions, yet restrictive enough to
guarantee uniqueness. Moreover, this approach has the additional advantage of extending the
notion of solution to functions less regular than classical differentiability would require.

Content of the course After a first introduction to PDEs starting from your knowledge
of ODEs, we will first present the only general result available for PDEs (in a very special
class of solutions), then, after introducing the necessary functional tools, we will focus on
linear elliptic and evolutionary problems through energy estimates. We will focus on Laplace
equation, wave equation and Burgers equation. In the example classes, we will touch also
linear parabolic problems and few nonlinear scenarios.

« Chapter 1: Introduction (2 lectures) Starting from your knowledge of ordinary differen-
tial equations (ODEs) we will introduce the concept of PDEs. We also present some
fundamental examples.

+ Chapter 2: The Cauchy-Kovalevskaya theory (4 lectures) We present basically the only
general existence theorem for PDEs. This is about solving locally PDEs with analytic
coeflicient within the analytic class of solutions. It was first proved by Cauchy for a
special class of PDEs, and later generalized by Kovalevskaya to its modern form. In her
work, she also clarified the geometric condition required for the theorem to hold.

« Chapter 3: Functional toolbox (5 lectures) This chapter prepares for the following two.
It reviews key definitions and properties of Holder and Lebesgue spaces, introduces

'For more historical information on the period before Euler see Cajori, Amer. Math. Monthly 35 (1928),
instead on the period after Euler, see Brezis-Browder, Adv. Math. 135 (1998).



1.2 From ODEs to PDEs 1 Introduction

weak (generalised) derivatives, and studies them in three settings: (1) approximation
by convolution, (2) extension and trace theorems, and (3) Sobolev spaces and their
inequalities.

« Chapter 4: Elliptic PDEs (6 lectures) We study variants of the Laplace equation with
prescribed boundary conditions. We introduce the Lax-Milgram theorem to construct
solution and its extensions through the Fredholm theory. We also discuss the elliptic
regularity estimates.

« Chapter 5: Hyperbolic PDEs (7 lectures) We study two fundamental hyperbolic equations,
the transport equation (first order) and the wave equation (second order). We also discuss
the method of characteristic and formation of singularity for Burgers equation. We also
present the method of energy estimate for the wave equation and its consequences.

1.2 From ODEs to PDEs

Consider a function
F(x7y17 S 7yk+1>7

depending on k + 2 real variables. An ordinary differential equation (ODE) is an equation of
the form
F(z,u(z),u'(z),...,uP(2)) =0, ze€lUCR,

for some k-times differentiable v : ¢/ — R (classical solution), where I{ is an interval here.

Example 1.1. if F'(z,y,2) = f(z,y) — 2, we recover

Y (x) = fz,y(x)),

whose solutions (z, y(x)) are trajectories (integral curves).

Partial differential equations (PDEs) arise when the unknown depends on several real
variables.
u=u(x) =u(x,...,2,), n>2

The equation then involves the partial derivatives

Ju 0%u u
8@’ 8@8% ’ 81’1'8]3]'8[5@, o

In this case we work with a domain (open, not empty connected set) i/ C R".

Definition 1.2 (Order-k PDE). Let n > 2 and &/ C R" be a domain. A partial differential
equation of order/rank £ is a relation

F(z,u(z), Vu(z),..., V*u(z)) =0, reU, (1.1)

where F : U x R x R" x R" x --- x R"” — R and the unknown is v : 4 — R. A classical
solution is a function u € C*(U) for which (1.1) holds pointwise on I/ after substituting
u,Vu, ..., VFu.

Remark 1.3. 1. (Notation) Vu = (0,,u);, V2t = (0,,2,u);j, and in general V*u collects all
order-k partial derivatives.
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2. (Evolution form) If one coordinate can be singled out as time, say ¢ = x;, the PDE
may be written as an evolution equation (e.g. du = G(t,2',u, Vu, ..., D¥u) where
x' = (x3,...,x,)). Finding a variable that plays the role of time can be a difficult task,
as for the Einstein equation in general relativity.

3. (Data) For ODEs, a solution depends by an initial value, u(ty) = ug. For PDEs the picture
is richer. If the equation is already in evolution form, this often reduces to prescribing
the initial profile u(ty, -) over the n — 1 remaining variables (and, when needed, time-
derivative data), while boundaries may occur in other variables (e.g. on a time—space
cylinder) and require boundary conditions there. In full generality, the data must be
given on a noncharacteristic hypersurface, a geometric non-degeneracy (detailed in the
next chapter).

4. (Systems) More generally, u : & — R™ and F may be R"-valued, yielding a system of
PDEs.

5. (Infinite-dimensional dynamical system viewpoint) It is natural to ask whether a PDE
can be seen as an infinite-dimensional version of an ODE. In the simplest case, whenever
a PDE can be written in evolution form, e.g.

8tu — G(I/, U, Dz’u’ ey Dgf)U),

we may regard u(t) as a curve in a function space X (equipped with a suitable topology),
and G : X — X as an operator, possibly nonlinear. However, even in this case, it is too
naive to think of PDEs as just an infinite dimensional version of ODEs. PDEs bring in
additional difficulties and features.

(a) Geometry via the principal symbol: The loss of total order (when passing from
R to higher dimension) gives new geometric phenomena (elliptic/parabolic/hyperbolic
types) which imply relevant physical features (such as time reversibility or irreversibility,
finite or infinite speed of propagation).

(b) Functional setting. In infinite dimensions, norms are no longer equivalent. Even
linear operators such as derivatives act as unbounded operators, so the choice of function
spaces and topologies for their domains and ranges becomes a crucial part of the analysis.

(c) Nonlinearity: interactions between derivatives creates much more variety than
just sign and modulus of the nonlinearity (as in the ODEs case).”

6. (Unifying principles in PDE) There is no single, systematic theory as for ODEs be-
yond a few foundational results. One must exploit the equation’s structure (ellip-
tic/parabolic/hyperbolic) and its properties like scaling, invariances, type of data and
geometry, hence focusing on fundamental equations and faithful toy problems, rather
than randomly invented ones. The field is unified by goals and methods, not by an
universal theory.

2At linear level the spectral theory can be seen as a generalization of the finite dimensional case, but at a very
limited extent (indeed, for example, the spectrum of an operator in infinite dimension can be continuous and
eigenfunctions may fail to exist).
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LECTURE 2

1.3 The Cauchy problem
1.3.1 What can we learn from ODEs?

A basic question in mathematical analysis how t “invert” differentiation. Given a continuous
function F' : R — R, one seeks a differentiable function v : R — R such that

d(t)=Ft), tel,

on some open interval / C R. This is the simplest type of differential equation, and the
fundamental theorem of calculus gives the explicit solution

t
ult) = / Fly)dy +ulto),  toeR.
to
This is a one-parameter family, determined by the boundary condition u(ty) = g (which,
in this case we usually call initial condition). The argument directly yields existence and
uniqueness of a differentiable solution u satisfying u(ty) = uy.

The same reasoning applies even if F' is only (Riemann or Lebesgue) integrable. In both
integration theories, the integral is obtained as a limit process (in the Riemann sense as the
limit of Riemann sums and in the Lebesgue sense as the limit of integrals of simple functions),
so the construction of w is intrinsically based on a limiting process.

The actual theory of ODEs begins when the right-hand side depends locally on the unknown
function, i.e.
W(t) = P(t,u(t)),
with /' defined, for instance, on R x R. We are interested in the existence, uniqueness, and
continuation of solutions, depending on the regularity of F'. The following are three classical
theorems in ODEs, presented in decreasing order of regularity on F'.

Theorem 1.4 (Cauchy-Kovalevskaya theorem for ODEs*). Assume that the vector field F'(t, u)
is real analytic® in a neighbourhood of (ty, ug). Then there exists a unique local real analytic

solution u of
u'(t) = Ft,u(t),  ulto) = uo,

defined in a neighbourhood of t,.

This theorem represents the first attempt to solve nonlinear ODEs “semi-explicitly” (explicit
up to summing an infinite convergent series) by infinite Taylor expansions.® Although theoret-
ically important, it is not practical (in particular u is constructed by power series involving all
derivatives of F') and requires very strong assumptions on F'. The same analytic approach will
reappear for certain PDEs in the next chapter.

3 Another more important and more recent result, the DiPerna-Lions theorem (1989), gives existence and
uniqueness of solutions in an appropriate almost everywhere sense to ODE when, for instance, F' = F(u) € W1
andV-F =0

“First proved by Cauchy (1842) for ODEs and first-order quasilinear PDEs, and extended to its modern form
by Kovalevskaya (1875).

>A real function is analytic at a point if it has derivatives of all orders and coincides with its Taylor series in a
neighbourhood of that point.

®Historically, after finding examples of ODEs (e.g. some Riccati equations, Airy equations) whose solutions
could not be express in terms of elementary functions and their integrals, practice shifted from closed forms to
special function and series solutions.
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Theorem 1.5 (Cauchy-Lipschitz / Picard-Lindelof theorem’). Assume that the vector field
F = F(t,u) is continuous in both variables and Lipschitz continuous in u. Then for every
(to, uo) there exists a neighbourhood of ty where the ODE admits a unique C' solution u satisfying
u(to) = wg. Moreover, the solution depends continuously on the initial data .

This result, proved by a contraction mapping argument, is the most useful in applications
(indeed, it constructs u by better and better approximations depending only on F'). It guarantees
existence and uniqueness of solutions, together with their continuous dependence on the initial
data. For PDEs, these three requirements form the notion of well-posedness.

Theorem 1.6 (Cauchy-Peano theorem®). If the vector field F'(t,w) is merely continuous, then
for every (ty, ug) there exists a neighbourhood of t, where the ODE admits at least one C'" solution
satisfying u(to) = ug. The solution need not be unique.

The proof proceeds by approximating the trajectory with polygonal lines (Euler method)
and applying compactness theorems such as Arzela-Ascoli. Conceptually is the finite di-
mensional (and for continuous functions) paradigm that underlies modern weak solution
constructions in PDE.

Example 1.7 (Non-uniqueness). A typical example is
u'(t) = u(t), u(0) =0,
which admits two types of solutions (Exercise 1.2(a)). Another example given by Peano is

s Au(t)?
w(t) = u(t)? 4 4

which admits five distinct solution types (Exercise 1.3(b)).

u(0) =0,

These theorems illustrate the delicate role of regularity the vector field F: higher regularity
facilitates uniqueness.

Local vs global solutions The previous theorems establish only local results. It is natural
to ask how far a solution can be extended in time. If it is defined for all ¢ > ¢, it is called a
global solution.

Example 1.8. (A blow-up example) Even when F' is continuous and locally Lipschitz in u,
the solution can blow up in finite time. A classical example is (Exercise 1.2(c))

u'(t) = u(t)?, u(0) = up > 0.

By contrast, changing the sign of the nonlinearity, u/(f) = —u(t)? admits a global solution.
Thus not only the modulus of the nonlinearity, but also its sign matters.

Criterion 1.9. A standard sufficient condition for ensuring global existence is the uniform
Lipschitz bound in u: there exists L > 0 such that

|F(t,u) — F(t,v)| < Llu—wv|  foralltandu,v.

This prevents blow-up and yields global solutions. Such a criterion rarely extends to PDEs,
even linear ones, because their associated operators are typically unbounded.

’Appeared first in Cauchy’s lectures at the Ecole Polytechnique (1830s) for C'* vector fields, later generalized
by Lipschitz, and finally given its modern proof via fixed points by Picard and Lindelof.
8Published in 1890 by Peano as an extension of Cauchy’s theorem.
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Criterion 1.10. When F' is continuous and locally Lipschitz in u with the linear growth
estimate

|F(t,u)] < C(1+ |ul) for some C' > 0 and all (¢, u), (1.2)

then the solution is global (prove it). This already shows that a linear growth bound strongly
influences uniqueness.

Example 1.11. For any initial data u(0) = ug € R, both

u'(t) = sin(u(t)), u'(t) = sin (u(t)?),

admit global solutions (use the above criteria).

1.3.2 Well-Posedness in the sense of Hadamard

Early work on ODEs emphasized explicit integration (quadratures and special functions), but
no general “finite formula" exists for solution to an arbitrary equations. The next step was
looking for “countable formula" with infinite series, which is what Cauchy did in the first
theorem above. However, this is limited to the local and analytic setting. The conceptual
breakthrough still by Cauchy (the second theorem above) consist of constructing solutions
through approximation and limiting processes (using the completeness of the real line) and
then check uniqueness, given suitable boundary conditions, by a contraction estimate. Peano
then extended this framework using compactness to construct solutions under lower regularity
for F' (third theorem). In the absence of explicit solutions and given that “solving” now has
a more abstract meaning, what is the connection between the equation considered and the
underlying physics? In his 1902 paper, Hadamard proposes the concept of well-posedness to
answer this question.

Definition 1.12 (Cauchy problem & Hadamard well-posedness). A Cauchy problem consists
of a PDE (1.1) on a domain U/ together with boundary conditions, i.e. prescribed values of the
unknown and possibly some of its derivatives on part of /. It is well-posed in a function space

X (in the sense of Hadamard) (e.g. C*(U), H*(U)....) if:
(i) There exists u € X solving (1.1) with the given boundary data;
(ii) The solution is unique in X, given the boundary data;
(iii) The solution depends continuously on the boundary data (in a suitable topology).

Remark 1.13. 1. (Meaning of well-posedness) Existence prevents over-determination; unique-
ness prevents under-determination. For evolution problems, (i)-(ii) encode causality:
the present data determine uniquely the future. (iii) means that causality has to behave
continuously to be practical: we need that small data errors produce only small changes
in the solution. The concept of well-posedness can be considered as a minimal require-
ment for physical consistency, and it is also useful from a modeling point of view to
identify correct equations and boundary conditions.

2. (The choice of X) The function space X (together with a suitable topology) should be
both large enough to find at least a solution and small enough (e.g. more regularity,
more decay at infinity) to have uniqueness. This is a crucial part of the problem: finding
the correct balance between these two requirements. When the function space is so
large that the derivatives of the unknown appearing in the PDE are not guaranteed to
exist in classical sense, we talk about weak solutions. The correct space is sometimes
suggested by key physical quantities (e.g. energy, entropy).

9
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3. (What we can export to PDEs) The Cauchy-Kovalevskaya theorem has some extension
to PDEs (see next chapter). Usually PDEs, even linear ones, lead to unbounded operators,
so searching for an analogue to PDEs of Picard-Lindelsf theorem seems to naive.” The
proof (through Gronwall lemma) of the growth condition criterion (1.2) for extending
solutions globally corresponds to the idea of a priori (or energy) estimates in PDEs.

“However, the Hille-Yosida theory can be seen (at some extent) as a generalization for (some) linear unbounded
operators in PDEs.

10
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LECTURE 3

1.4 Linear and classes of nonlinear PDEs

Definition 1.14. We say that the PDE is linear when the vector field /" is a linear function of
u and its derivatives; Then (1.1) reduces to'’

S aa(@)ulx) = f(2)

a:la|<k

for some coefficients a, and source term f. When f = 0 the PDE is said to be homogeneous.
We say that the PDE is semilinear when the vector field F is linear in the highest order
derivatives; the PDE takes the form

Z ao(2)0%u(z) + ag [;E, u, Vu, . .. ,V’“‘lu} =f

a:lal=k

where the coeflicient ay can be nonlinear in all variables. We say that the PDE is quasilinear
when the vector field F' is linear in the highest order derivatives but with possible nonlinear
dependency in the lower-order derivatives; the PDE takes the form

Z o [z,u, Vu, . .. ,Vk_lu} *u(x) + ag [z,u, Vu,..., Vk_lu} =/

a:lal=k

We say that the PDE is fully nonlinear if it is not one of the above forms. When the PDE
takes the form of an evolution problem and the vector field F' does not depend on time ¢, the
PDE is said to be autonomous, and a solution u which does not depend on time is said to be
stationary.

Example 1.15. The following PDEs demonstrate each of the above forms: Au = 0 is linear,

R TRV 13 &%u Pu _ Ou _ . T3 %u u
Au = ( (%1) is semilinear, u3-5 + 5 = g, On U = u(z,y) is quasilinear, and 53 5
02u \2 . . .
<8x8y) = 0 on u = u(x,y) is fully nonlinear.

Some concrete examples of PDEs in physics are: the compressible and incompressible
Euler equations, the compressible and incompressible Navier-Stokes equations (e.g. in the
simplest incompressible form d;u + (u-V)u — vAu + Vp = 0 with V- u = 0; the question of
global regularity vs finite-time blow-up from smooth initial data in three space dimensions
is a Millennium Prize Problem), the Maxwell equations in electromagnetism, the (Maxwell)-
Boltzmann equation in kinetic theory, the (Jeans)-Vlasov equations in plasma physics and
galactic dynamics, the Schrodinger equation in quantum mechanics, the Einstein equations in
general relativity.

Two concrete examples of PDEs arising from within mathematics are the Cauchy-Riemann
equations O,u — 0,yv = 0 and Jyu + 0,v = 0 in complex analysis (which imply Au = Av = 0)
and the Ricci flow 0;g;; = —2R;; (Where g;; is the metric tensor and R;; is the Ricci tensor) in
differential geometry.

10 ; o _ 9% 9%
'We write 0% = B ST

11



2 The Cauchy-Kovalevskaya Theorem

2 The Cauchy-Kovalevskaya Theorem

This section deals with the only “general” theorem for PDEs that can be carried over from
ODEs, the Cauchy-Kovalevskaya Theorem. Its rigorous formulation introduces the notions
of non-characteristic data, principal symbol, and the basic classification of PDEs. However,
analyticity is often not a satisfying functional setting for PDEs.

2.1 Real Analyticity

Definition 2.1. Given U/ C R" open non-empty, a function f : I/ — R is real analytic near
T € U if there is 7 > 0 and real constants (f,).enn so that the series

> falw =) (2.1)

aeN”

(where we denote z* := z{'x3? - - - ") is converging, respectively absolutely converging''

when n > 2, and converges to f(z) for x € B(Z,r). A function f : Y — R is real analytic
on [ if it is real analytic near any & € U. A vector valued function f : «{ — R™ (m > 2) is
real analytic if each of its component is real analytic. The set of all real analytic functions on a
given open set U is denoted by C*(U).

Remark 2.2. Simple examples of analytic functions are polynomials, the exponential, cosinus
and sinus. The complex conjugate z — Z is not complex analytic but is real analytic on R
The function e~ /%" extended by 0 at z = 0 is smooth but not real analytic near x = 0 (its
Taylor series is zero). More generally non-zero smooth compactly supported functions are not
real analytic. The Liouville theorem (in complex analysis) is false for real analytic functions
(e.g. f(z) = 1/(1 + z*) on R is bounded and non-constant). Note finally that real analyticity
is a local property: f is real analytic near = implies that f is real analytic on a neighbourhood
of 7 (see Exercise 1.8(v)).

Proposition 2.3. GivenUd C R" open, a function f : U — R is real analytic on U if and only if
f € C>®(U) and for any compact K C U there are constants C'(K),r(K) > 0 so that

Vo € K, Ya e N",  |0°f(z)] < C(K) r(K)lel’

where o := aqlas! - ! and |a| = a1 + as + -+ - + .

Remark 2.4. Another equivalent definition is the following: for every a € U C R", there
exists an open neighborhood ¥V C C" of a and a holomorphic function F' : V — C such that
F |v ~ge = J (proveitin case Y C R). When U = R", real analyticity can be characterized by
the exponential decay of the Fourier transform (we will not use this characterization).

1 Alternatively, in the definition we can just ask for conditional convergence but we need to clarify the way
we sum on multiindices: >, 3", |0 2aenn fa(@ — )%

12
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LECTURE 4

Proof of Proposition 2.3. Preliminaries. Let r > 0 be such that the power series (2.1) converges
absolutely on B(Z,r)."” Then for any 7 € (0,7/+/n), setting

)= ) | fal 1 < o0,

aeNn

which is finite by evaluating the series at 7+h where h = (7, ..., 7) (so that|h—Z| = \/nT < r),
we have

fol < CEHE 7 Va e N, (2.2)

Consequently, for any 0 < 7 < 7 the series is absolutely and uniformly convergent on B(Z, 7*)
since

Z | fal |2 — 2] < C(7) Z(@)M < 0.

«

Proof of =>. Assume f is real analytic near 7, i.e. (2.1) holds and the series is convergent
(absolutely convergent for |z — Z| < r when n > 2). Fix numbers

O<i<i<i<r/yn<r,

so that (2.2) holds with 7, and the uniform convergence discussion applies on B(Z, 7).
Then the series and all its termwise derivatives converge uniformly on B(Z, ), hence

f e C>®(B(z,7)) and

°f(z) = a! fa.
Now take x € B(Z,7) and any 5 € N". Then
@) <3 _Ial o le — "
a>f '
al
< O(F) Z polal___ " gla—p
5 e
_\ le=8
~—|B\ r
Z (v — <f>
a>f

Using the multiindex identity (see Exercise 1.7)
a!
Z —‘)\Iafﬁl Bl (1 — x)~Usln) (0<A<1),
2 {a— )
with A = 7/, we get
C(r)
(L—7/F)"

Thus on each closed ball B(Z,7) we have the desired bound. Covering any compact X' C U
by finitely many such closed balls yields the global constants C'(K),r(K) € (0, 00), obtaining
0% f(2)| < C(K)BIr(K) Pl forallz € K.

07 ()| < C@) i Bl (1= /7)) = g7 =)

2In general, we define the radius of convergence r € [0, 0o] as the supremum of the radii where the series is
absolutely converging.
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2.1 Real Analyticity 2 The Cauchy-Kovalevskaya Theorem

Proof of <—. Fix & € U and let K := B(Z, p) C U. By assumption, there exist C, 7 > 0 such
that

~ |
0% f ()] < C% forallz € K, a € N™.

Set p, := min{p, 7/2}. For any x with |z — Z| < p,, the segment & + t(x — %), t € [0, 1], is
contained in K, so we may apply Taylor’s formula with integral remainder:

=Y 0 f(@ +ZR — i),

|| <k || =k+1
where )
Ru(z) := BJ (1 —t)=19% f (& 4 t(x — 7)) dt.
al Jo
Thanks to the controls on the 0% f’s we have ) | aGN”‘ ai !(i) (x — Z)¥| < oo (prove it) so Taylor

series is absolutely converging on B(Z, p.). Using the bound on 9“ f we obtain
|R.(x)] < C#lol,

Hence

> R@)(@- 3| SCFE ST - 37

|or|=k+1 |a|=k+1

Since } 1, [y*| < C |y|™ for some constant C;, > 0, we obtain (prove it)

C//(k + n) (k-l—l)‘x . jlk—&-l'

Y Ra(@)(z—2)°

|a|=k+1

Since |z — Z| < p, we get

— F|\k+1
Z Ro(x) (x — )| < C"(k+n)""! (M) < C"(k +n)"t o=+ koo

|o|=k+1

Therefore the remainder tends to zero, and the Taylor series converges absolutely to f(x) on
B(Z, p.). Since & was arbitrary, f is real analytic on I. O

The main idea in part (=) of the proof above consists of a comparison between intricate
combinatorial sums and the derivatives of the geometric series. This comparison is the core of
Cauchy’s argument in the Cauchy-Kovalevskaya theorem (for ODEs and later for PDEs). It
motivates the following definition.

Definition 2.5. Let f = ZaZO fax®and g = ZaZO Jox® be two formal power series. We say
that ¢ majorizes f, or g is a majorant of f, written g > f, if g, > |f,| foralla > 0. If f
and g are valued in R™, then we say that g majorizes fif g; > f;forallj =1,...,m

Remark 2.6. Note that g > f implies g, > 0 for all « € N".

Proposition 2.7. Let f and g be formal power series.
(i) If g > f and g converges for |x| < r, then f converges absolutely for |z| < r as well.

(ii) If f converges absolutely for |x| < r and 7 € (0,7 /n), then there exists a majorant f >> f
which converges on || < T.

14



2.1 Real Analyticity 2 The Cauchy-Kovalevskaya Theorem

Proof. (i) Fix x € B(0,r) and set y := (|x1],...,|zs|). Then |y| = |z| < r, and for the
truncated sums

= 2o = D0 faly™ < D0 00y <00y = 9(y),

la|<Kk la|<k la| <k a>0
where we used that the g,’s are non-negative. Since g(y) < oo then Sy, is uniformly bounded
(and monotone) in k. Therefore Sy, converges, i.e. f converges absolutely at x.
(ii) Fix 7 € (0,7/n) and choose #* with

r

VnE < o< —.

B

Lety = (7,...,7); then |y| = 7v/n < r, so by absolute convergence

= Z|fa|f‘a| < o0, hence Ifa] < Sl forall a.

a>0

We construct two examples of majorants.

Majorant 1. Define
_ n 1
= S[——— = 8§ plelge
f(a) i[[ll_xi/f > i

a>0

Then f, = S#71%l > |f,], s0 f > f. Moreover, the product converges whenever |z;| < 7 for
all 7. Since |z| < 7 implies |z;| < || < 7 < 7, it also converges on the ball B(0, 7).
Majorant 2."> We define

. 5 ot o
e P SZ( > 92 i

k>0 a>0

where the last is a multiindex identity (see Exercise 1.7). Its coefficients satisfy

- la!

Jo =S

> STl > | fal,

al plal
so f > f. For convergence

: a 1 k! o + Ty, k
Z‘fax‘—szf725|x|—52(|xl| ' |x|)

a>0 k>0 lajl=k k>0

If || <7, then > | |z;| < \/n|z| < /n7 <7, so the last geometric series converges. Hence
f converges on |z| < 7. O

3The two majorants coincide in the scalar case n = 1.
“Majorant 1 requires only 7 € (0,7/y/n), while majorant 2 requires 7 € (0,7/n).
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2.2 The Cauchy-Kovalevskaya theorem for ODEs 2 The Cauchy-Kovalevskaya Theorem

LECTURE 5

2.2 The Cauchy-Kovalevskaya theorem for ODEs

Theorem 2.8 (Cauchy-Kovalevskaya theorem for (scalar autonomous) ODEs). Leta,b > 0,
up € R, and F : (ug — b, ug +b) — R be real analytic. Ifu : (—a,a) — (up — b,up+b) isa C*
solution of

u'(t) = Fu(t),  u(0) = u,
then u is real analytic on (—a, a).

Remark 2.9. As stated, the construction of solutions is already settled by the Picard-Lindel6f
theorem so this is a regularity theorem: the solution is real analytic in the region where the
field F' is analytic. Instead in the analogue theorem for PDEs, the construction of the solution
is part of the theorem. To prove the theorem, we can assume 1, = 0. It is also sufficient to
prove analyticity near ¢ = 0, as then one can apply the same argument starting with any
to € (—a,a).

We give four different proofs to show several ideas. Only the proof by majorants will
extend to the PDE case.

Proof by Picard iterations in C (Not examinable). Since F' is real analytic at u, there exists
p > 0 and a holomorphic extension (still called F') to the complex disc D,(ug). Choose
0 < p1 < psothat D, (ug) C D,(ug) and set M := Supj,_,o<p, [F(w)| < 00, L =
SUD|yy—y|<py |F(w)] < 00. Pick R > 0 with MR < p;/2 and ¢ := LR < 1, and consider the
closed disk Dp.

Define uy(z) = ug and, for n > 0,

Upt1(2) == uo + /OZ F(u,(2)dz" = +/0 Flun(tz)) 2 dt, |z| < R.

By induction, each w,, is holomorphic on Dg, u,,(0) = ug, and |u,41(2) — ug| < MR < &, so
un(Dr) C D,, (up).
For |z| < R,

1
|tn41(2) —un(2)] < / |E (un(t2)) = F (un1(t2))] 2] dt < LR [[un—=tin-1lcc = ¢ [[tn—ttn-1]|oo-
0

Hence |u,, — w||,, — 0 for m > ¢ and ¢ — oo. Thus (u,), is Cauchy in the Banach space

(C(Dg), || - |ls) (the space of continuous functions on D) and by completeness there exist
u € C(Dg) with u, — u uniformly on Dp.

The limit is holomorphic. Indeed, for any closed piecewise C'! curve v C Dy, Cauchy’s integral
theorem gives fv U, dz = 0 for all n, and by the uniform limit also fy udz = 0; by Morera’s

theorem, u is holomorphic on Dp. Passing to the limit in the defining integrals gives
u(z) = ug —I—/ Flu(z")) d/, z € Dg,
0

so for z real in Dy we have v/(z) = F(u(z)) and u(0) = uy, thus by uniqueness it coincides
with the given C! solution, which then it is analytic (as it extends as a holomorphic function).

]
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2.2 The Cauchy-Kovalevskaya theorem for ODEs 2 The Cauchy-Kovalevskaya Theorem

Proof by separation of variables in ODE theory (not examinable). In case F'(0) = 0 then the
solution is u = 0 that is real analytic (and by uniqueness coincides with the given C* solution).
Letting F'(0) # 0 we choose v/ € (0, b) such that F' # 0 on (—b/,b"). Then 1/F is analytic
there and we define

G(y) == /Oy F(lx) dz, y e (=b.,V),

so G is analytic and G'(0) = 1/F(0) # 0. For some a’ € (0,a), u((—a’,a’)) C (=V,b') and
by the chain rule

hence G(u(t)) = t for |[t| < d (using G(0) = 0). By the analytic inverse function theorem, G~!
is analytic near 0, so u(t) = G~'(¢) is analytic near 0. O

Remark 2.10. This proof secretly relies on either complex extension or the method of majorants.
Indeed, the proofs of the analytic inverse function theorem proceed by locally complexify-
ing real-analytic maps and applying the holomorphic implicit function theorem (proved via
Cauchy’s integral formula), or otherwise by series reversion (via recurrence relation of co-
effiecients or Lagrange inversion theorem), with convergence ensured by Cauchy majorants."

Proof by embedding the ODE in a one-parameter family of ODEs (not examinable). Fix R € (0, b).
Since F' is real-analytic, there exists p > 0 and a holomorphic extension (still denoted by
F)tothetube Q :={w =2+iy € C: |z| <R, |y| < p}. Set M := sup,,cq |F(w)| and

L :=sup,eq |F'(w)|.

For z € C consider

ul(t) = z F(u,(t)), u,(0) =0, for |z] <2. (2.3)
On ), |2F(w)| < 2M and the Lipschitz constant of w — zF'(w) is bounded by 2L. Choose
: R p 1
< — ——, — - 24
T—mm{zM’ 2M’ QL} @4

By Picard-Lindelf there is a unique u, € C'([—7,7]) with u.(t) € Q for |[¢t| < 7, with 7
independent of z (check how the interval of existence is estimated in the proof of Picard-
Linderof).

Let u := uy. For real z € (—2,2), the map ¢ — u(zt) solves (2.3); by uniqueness,

u,(t) = u(zt) for |t| <7, z€(-2,2)NR. (2.5)

We show that u(t) is holomorphic in z. Since the map z — u,(t) is C'" in the real sense, that is
in the variables R(z), J(z) (check it), then to show that is holomorphic it is enough to check
that 9;u, = 0 (this is equivalent to the Cauchy-Riemann equations), where 9 := 1(9, + i9,).
Differentiate (2.3) in z. Using 0;2 = 0 and the holomorphic chain rule on €2,

0y(0zu,) = z F'(u,) Ozus, d:u,(0) =0,

BHistorically, Cauchy is credited with the first proofs of the implicit function theorem, one employing
holomorphic functions and another based on his method of majorants, see Krantz-Parks, The Implicit Function
Theorem (2002).
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2.2 The Cauchy-Kovalevskaya theorem for ODEs 2 The Cauchy-Kovalevskaya Theorem

hence 0;u, = 0. Therefore, for fixed ¢, 2z + u,(t) is holomorphic on |z| < 2.
Thus, for fixed ¢t we have

— 1
u,(t) = Z il 8ﬁuz(t)‘2:0 2, |z| < 2.

Atz =1,

u(t) =w(t) =3 % ous(t)|_,.

By (2.5), for real z near 0, u,(t) = u(zt), hence

0

d
Ou.(t)]_, = ——ulzt)| =t"u(0).
)] = pulan| =t u(0)
Therefore,
u(t) = Eu(é)(O) for |t| <,
=0 "
and u is real analytic near 0. [

Proof by the method of majorants. Let u be the given C" solution of v’ = F'(u(t)), with F'
analytic. Then F'(u(t)) is C!, hence ' is C' and u is C?. Iterating this, we conclude u € C*°.
We can compute the higher derivatives inductively:

By induction, u(™ is always a polynomial p,, in the values F*)(v), for k = 0,...,n — 1,

with non-negative integer coefficients. Moreover, this inductive structure is universal: the
polynomials do not depend on the specific choice of /. In particular

u™(0) = p, (FO(0), FD(0),...,F"D(0))  for n>1.

Define the formal Taylor series at 0 by

- pu(FO(0),..., F"(0)) u™(0)
at) ==Y - =3 0 py = u®(0) == up = 0.
n>0 n>0

Assume there exists an analytic G majorant of F' at 0, i.e. such that
G®0) = |[FM(0)|  Vk >0,

and let v solve

V(t) =G(),  v(0)=0,

analytic on |t| < R. The same differentiation scheme gives

v™(0) = p, (G(0), GM(0),...,G"1(0)).

18



2.2 The Cauchy-Kovalevskaya theorem for ODEs 2 The Cauchy-Kovalevskaya Theorem

Since the p,, have non-negative coefficients
[ )] < pu(IFOO)],, [FP7(0)]) < pa(G(0),...., G"7H(0)) = v(0).

Because v is analytic on [t| < R, its Taylor series converges there; this implies the that
Taylor series for u also converges for |[t| < R (Proposition 2.7(i)), so u is analytic near 0.
Moreover, u/(t) and F(u(t)) are both analytic (by composition of analytic functions) and all
their derivatives agree at 0, thus it solves the ODE near 0. By local uniqueness v = u near 0,
so u is real analytic near 0.

Since F' is real analytic at 0 there exist C,r > 0 with

IF®0) < Cklr™*  VE>0.
Consider the majorant constructed in the proof of Proposition 2.7(ii)

Cr

(lz] <),

G(z) = ZCr’kxk =

k>0

r—x

so G®(0) = Ck!'r=% > |F®)(0)|. The initial value problem

has the explicit solution
20t
y=r—ry/l——
v(t)=r—r T,
which is analytic for |t| < R with R = 35. This provides the required G and v, completing

the proof near 0. [l

Remark 2.11 (Cauchy-Kovalevskaya for ODE systems). As in the proof of Proposition 2.7(ii),
take (for example) the symmetric vector majorant f = G = (G4,...,G,,) withG; = --- =
G = ﬁ With this choice, the scalar majorant proof of Theorem 2.8 can be carried
on to obtain the analogue result for ODE system: if F' : B(ug,b) — R™ is real analytic and
u: (—a,a) = B(ug,b) is a C! solution of u/(t) = F(u(t)) with u(0) = ug, then u is real
analytic (left as an exercise).

Remark 2.12 (Non-autonomous case). The case of non-autonomous /' = F'(,u) can be reduce
to an autonomous system: ¥y = (Yo, Y1, .-, Ym) = (t,u)andy = F(y) := (1, F (Yo, Y1, - - - s Ym))s
y(0) = (0, up). Thus Cauchy-Kovalevskaya applies in this case as well.
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LECTURE 6

2.3 The Cauchy-Kovalevskaya theorem for PDEs

We consider a k-th order scalar quasilinear PDE'

Z (g (.CE, u, Vu, ... 7V"“_lu) dou ~+ ag (.CE, u,Vu, . .. 7Vk_1u) =0, z€eUCR" (26)

|a|=k

on the open domain &/ C R". We want to extend the method of majorant to construct real
analytic solutions.

Note that when k& = 1 there is an alternative simpler proof of Cauchy-Kovalevskaya theorem,
making use of the ODE result and based on the so-called method of characteristics'’. However,
it fails for systems of first-order PDEs (and thus also for scalar higher-order PDEs), so we need
a more general proof.

2.3.1 Cauchy problem

We must first characterize the set on which conditions complementing the PDE (2.6) will be
imposed.

Definition 2.13. Given U/ C R" open and nonempty, and > C U, we say that > is a smooth
(respectively real analytic) hypersurface near x € X if there exist ¢ > 0, an open set
Y C R", and a bijection

¢ : B(x,e) =V

such that ® and ® ! are smooth (respectively real analytic), with ®(x) = 0, and
(XN B(z,e)) = {y, =0} N V.

Also, we say that > is a smooth (respectively real analytic) hypersurface in !/ if the
previous property holds near every z € X.

Remark 2.14. To connect to your differential geometry course, a hypersurface X is an im-
mersed embedded smooth (resp. real analytic) submanifolds with codimension 1 without
boundary. Real analytic submanifolds are defined like smooth submanifolds except that all
local parametrisations are required to be real analytic.

Normal coordinates near a hypersurface. Let ¥ C U/ C R" be a smooth (resp. real analytic)
hypersurface, and let € X. Then there exist'® :
« a smooth (resp. real analytic) unit normal vector N : ¥ — S"71,

+ a smooth (resp. real analytic) map

U : Bgo-1(0,€) X (—¢,8) — Uy,

18We recall that, letting U C R’ be open (¢ > 2 being the number of variables) and u : f — R, for j € N
the j-th iterated gradient is V/u := (O, - +Ox,, U)1<iy,....i;<¢» and for a multiindex o = (ay, ..., ay) € Nf we
write g 1= Ogt -+ - Ogf.

"We will discuss such method for hyperbolic PDEs in Chapter 5.

5We assume without proof these properties that follow from the definition of hypersurface.
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such that, writing = (y1,...,¥y,—1) and y,, € R,
U(G.ya) = V@) + wN(E(@),  ¥(0,0) =z, (2.7)

where U : Bpa—1(0,e) = S NU, C U C R" is smooth (resp. real analytic), and U, C U is a
neighborhood of x. Differentiating we get

0,0 (y) = N((7)).

For the tangential directions, fix 2’ € U, N 3, and choose 7’ such that U(7’,0) = 2’. Then the
tangent space to ¥ at 2’ is

Ty% = Span (9, 9(7,0),...,0,,_,¥(7,0)).

* Y Yn—1

Now consider the chart ® := U~! associated with this parametrisation. Let
po:=o,: U, - R

be its last component. By construction ¥ N U, = {¢ = 0} NU,, and ¢ is smooth (resp. real
analytic).
We also claim that V,p(z') = N(2') for all 2/ € U, N 3. Indeed, by definition of ¢ we have
the identity (¥ (y)) = v, for all y in the domain. Differentiating this with respect to y; for
t=1,...,n—1gives

Vep(¥(y)) - 0, ¥(y) = 0.

Thus V,(¥(y)) is orthogonal to each d,, U(y), hence orthogonal to the tangent space of ¥ at
U(y), and therefore collinear with N (W(y)). Differentiating instead with respect to y,, gives

Ve (U(y)) - 8y, (y) = Vap(¥(y)) - N(U(7)) = 1.

Since V,(¥(y)) is collinear with N (U (y)) and their dot product is 1, they must agree. In
particular, for ' = U(7/,0) € X, we have V,p(z') = N(2/).

To prescribe the conditions on Y complementing equation (2.6), we will need derivatives of u
in the normal direction.

Definition 2.15. Let ¥ C U C R" be a smooth (resp. real analytic) hypersurface, let N :
> — R" be the corresponding smooth (resp. real analytic) unit normal, and let u € C(Uf). For
x € Y and 5 € N, we define the j-th normal derivative of u at = by

Bule) = 3. Fu@) N = 30

... 0zon
oo =5 arttan=j "

() N1(z)* ... Np(x)*m.

Now, we prescribe on a hypersurface ¥ the value of u together with its first £ — 1 normal
derivatives. Informally, this specifies how the solution starts to extend away from . This
motivates the following definition.

Definition 2.16. Let X C U/ C R" be a smooth (resp. real analytic) hypersurface, and let
9o, - - -, gk—1 : 2 — R be smooth (resp. real analytic) functions. The Cauchy problem for
(2.6) with Cauchy data g, . .., gx—1 on X is the problem of finding a function u solving (2.6) in
an open set V' C U such that X NV # (), and

u=go, Oyu=gq, O3u=gy, ..., 00 u=g,1 onXNV. (2.8)
We call ¥ the Cauchy hypersurface and {g; ?;& the Cauchy data.
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LECTURE 7

Remark 2.17 (Are (2.8) “boundary conditions”?). We prescribe data on a hypersurface > C U,
which in general is not the topological boundary OU. We will still sometimes call these
“boundary conditions”. The reason is that near any point, > = { = 0} splits a neighbourhood
into the two sides {¢ > 0} and {¢ < 0}, and X is their common boundary. For instance, we
will see that for the wave equation uy — Ayu = 0onld = R"™ x (=T, T), prescribing u and u,
on {t = 0} lets us solve the equation both forward and backward in time (so with V' = U).
The hypersurface {t = 0} is not the boundary of U/, but it can actually be thought as “initial
boundary” of (for instance) the future region {¢t > 0}.

2.3.2 The non-characteristic condition

To determine a smooth or real analytic solution u, certainly all the derivatives of © must
be determined from equations (2.6)—(2.8), and in particular all its derivatives on ¥ must be
determined by these. Leaving aside the question of constructing the solution, we want to
understand why (2.8) are natural to solve the Cauchy problem in the analytic class and what
kind of conditions impose. To gain intuition, consider the case / = R" and ¥ = {z,, = 0} a
hyperplane, the case of flat Cauchy hypersurface'”. Then N = e, is constant, and (2.8) reads

U(ZL’,7 0) = gO(x,)a aInU(I/, 0) = gl(x,)7 ceey axkn_lu(xlv O) = gk—l(‘r,)a T = (J’Ju 0) €.
Differentiating (2.8) on X along 9% with o = (o, j), o/ € N7, 0 < j < k — 1, gives
O%u(a’,0) = 0% 07 u(a’,0) = 8% g;(a'). (2.9)

The first missing derivative is 9 u, which is not prescribed by (2.8). We recover it from the
PDE (2.6). Set
A(z) = ag,.op) (2, u(z), Vu(z),..., V" u(2)) .

By (2.9), A(z) is determined on ¥ by the Cauchy data 9% g; with |o/| +j < k — 1. If A(x) # 0,
then on 3 we can single out 0% u(x) by rewriting the PDE:

A ao(...) ao(...)
0, u(x) = — Ou(z) — .
22 AW A)

an<k—1

The right-hand side depends only on the quantities 9% g; with |o/| + j < k — 1 thanks to (2.9),
so 9F u is determined on . The condition A(z) # 0 is precisely the non-characteristic
condition in the case of flat Cauchy hypersurface.

It allows to actually determine higher-order derivatives. Indeed if we denote g, := a’;nu on X,
which we have just determined from gy, . . ., gx—1, we can now differentiate the PDE along x,,
to obtain

Z ao (z,u(z), Vu(z),. .., V¥ u(z)) 820,,u(z) + do (2, u(z), Vu(z),..., VFu(z)) = 0
laf=k

with the new a, given by

ao (...) = Z Oy, [0 (z,u(2), ..., V¥ u(2))] 00u(z)+0s,, [ao (z,u(z),..., Vi u(z))],

laf=k

Here and later “flat Cauchy hypersurface” means a hyperplane.
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and assuming again A(z) # 0 on ¥ we can compute

ng(LC) — @ﬁjlu(x) _ Z Qe (ZL’, . 14,(:) N U(I)) ajaxnu(x)—&o (x, ceey \V4 u(q;))
|a|=k, an<k—1

so that gy, is a function of 82‘,' gj for |&/| 4+ j < k on X, and therefore is a function of 8;‘,/ g; for
|o/| +7 < k—1, on X by the previous step. Taking also derivatives in the tangential directions,
this determines 9%u on X for o = (o, j) with o/ € N"~! and j < k + 1. By induction on k
one determines all derivatives of v on X.. The general condition reads as follow.

Definition 2.18. Given X C U C R" a smooth (resp. real analytic) hypersurface as defined

above, and gy, ..., gx—1 : £¥ — R smooth (resp. real analytic) functions on ¥, we say that the
boundary conditions (2.8) are non-characteristic for the PDE (2.6) if
Az) = Z ao (z,u(z), Vu(z),..., V¥ u(z)) N(2)* #0, VzeX. (2.10)
|a|=k

Note that A(z) only depends on the data (PDE’s coefficients a,, with |a| = k, the Cauchy
hypersurface ¥ and the Cauchy data {g; ?;&). For the moment, we have justified (2.10) in the
flat case; the general case will be derived from this.

It is then natural to ask, given the PDE and the Cauchy data {g; ?;é on which hypersurface
we have such condition. This motivates the following definition.

Definition 2.19. Let P be alinear differential operator of order k onR", Pu := 3, | .4 aa(x) O3 u,
with smooth coefficients a,(x). The principal symbol of P at x is

op(2,8) =Y aa()€",  CER"
o=k

Let ¥ C R"™ be a smooth hypersurface and let 2 € . If N(z) # 0 is a vector normal to ¥
at x, we say that ¥ is non-characteristic at x if op(x, N(z)) # 0. Otherwise we say that X is
characteristic at z. In terms of the characteristic cone at x defined by C, := {£ € R"\ {0} :
op(z,£) = 0}, ¥ is characteristic at x if and only if N(z) € C,. As extension, we call ¥ a
non-characteristic (resp. characteristic) hypersurface (for P) if it is non-characteristic (resp.
characteristic) at every point z € 3.

Remark 2.20 (Quasilinear extension). If P is quasilinear of order k, that is

Pu(z) := Z ao (2, u(z), Vu(z),..., 08 \u(z)) 0%u(z),

|or| <k
then for a given function u we freeze the coefficients at u and define the principal symbol along
u by

op[u](5,€) = 3 aa(wu(x), Vule), .., 0 u()) €2, € R,

la|=k
We then set C,[u] := {£ € R" \ {0} : oplu|(z, &) = 0}, and say that a hypersurface ¥ is non-
characteristic at = € 3 (for P along u) if op[u](z, N(x)) # 0, i.e. equivalently N(z) ¢ C,[ul.
Otherwise Y is characteristic at .
Remark 2.21. With these definitions, (2.10) reads exactly op[u](z, N(z)) # 0 on X. Hence, the
characteristic cone collects, at each point z, the directions that are not admissible, in the sense
that the boundary conditions (2.8) are characteristic on any hypersurface with that normal
direction. This full directional picture is the natural starting point for the PDE classification
(elliptic, hyperbolic, parabolic, etc.).
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Let us justify (2.10). We reduce to the flat case using a local chart ®. The unknown
v(y) == u(¥(y)), with & = &1, satisfies a k-th order quasilinear PDE

Z ba (y, v(y), Vo(y), ..., V’“’lv(y)) 9, v + bo (y, v(y), Vo(y),..., Vk’lv(y)) =0

|a|=k

since, from u(x) = v(®(z)), by chain rule, /-th order partial derivatives on u depend on
J < (-th order derivatives on v. In particular for each multiindex « with || = k we write

Ou(x) =Y Coplx) (O))(2(x)) + Lo,
181=k

where é’aﬂ(x) depends on V,®(z) only, and “l.o.t” collects (lower order) terms involving
only v with |y| < k — 1. For the pure normal multiindex 3 = (0,...,0, k), since on ¥,
V. ®, =N,

Co0r0m) (@) = [ ] (05,20(2))" = (Voo())".

(2

hence CN’a7(07_,_707k) (x) = N(z)“. In the flat case we know that the non-characteristic condition
reads b, ox)(...) 7 0. Hence, in the general case we obtain

0 % beo,.om (P(2), v(®()), ..., V" o(d(2))) = Z ao(z,u(z), ..., V" u(z)) éa,(O,...,O,k) (x)

laf=k

=) aa(zu(@),..., V" u(x)) N(z)°,

laf=k

which justifies (2.10). We can now state the key result, saying that (2.10) is not only necessary,
but also sufficient to solve the problem locally in the analytic class.

Theorem 2.22 (Cauchy-Kovalevakaya Theorem for PDEs). GivenU, ¥, go, . . ., gk—1 as above,
all real analytic and satisfying the non-characteristic condition at x € > C U, then there is a
unique local analytic solution u to (2.6), (2.8). Namely, there isU,, C U open set around x so that
there is a unique analytic solution u to (2.6) on U, satisfying the conditions (2.8) on X N U,,.

Remark 2.23. This Cauchy-Kovalevskaya theorem was first proved by Cauchy in 1842 for first
order quasilinear evolution equations, then formulated in its general form by Kovalevskaya in
1874. At about the same time, Darboux reached similar results, although with less generality
than Kovalevskaya. Both Kovalevskaya’s and Darboux’s papers were published in 1875, and
the proof was later simplified by Goursat in his influential calculus textbook around 1900.
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2.3.3 Proof of the Cauchy-Kovalevskaya theorem for PDEs

Proof. Step 1. Reduction to a first-order system. First, by analyticity of ¥ at Z, we use an analytic
chart to reduce to the base point & = 0 in an open neighborhood U, with = = (Z, z,,) € U,
Y N Uy = {x, = 0} N Uy, and all coeflicients a,, still real analytic in Uy. Second, since X
is non-characteristic at 2, A(x) := a(o,..ox) (%) # 0 and after possibly shrinking U/, we may
assume A(x) # 0 on Uy. Dividing the PDE by A(x) we reduce to ao,... o () = 1 onUy. Thus
the PDE can be written in the form

OF u(z) = — Z ao(z,u(x), ..., V¥ () 0%u(z)—ao(, ..., Vi u(x)), for x €U
gl
- (2.11)

Third, we reduce the Cauchy conditions to &7 u(z,0) =0, for j =0,...,k — 1, by looking
at the problem for v = u — G where G(x) := Zf;é 3;—%’ gj(Z), and then renaming v as u for
simplicity. In particular u(z,0) = 0, and hence u(0) = 0.

For each multiindex 8 = (31, ..., ,) € N* with | 3] < k — 1, define

Us(x) := 0Pu(x), U(z) = (Uﬁ(m))m\gk—l ER™, m= (n Zf; 1)'

We have 0,,Us = 92+°»u. Consider three cases. (i) If |3| < k — 2, then |3 +e,| < k — 1, so
05, Up = Upye,. () If |B| =k —1and 5, < k—2,picki <n—1with 3; > 0,set o := f+e¢,
and write o = e; + vy with |y| = k — 1; then 0,,Us = 0%u = 0,,(0Ju) = 0,,U,. (iii) If
B=1(0,...,0,k—1)and 9,,Us = 9" u.In this case we use (2.11), where on the right-hand
side each 0%u is of the form 0,,U. for some +' with |'| = k — 1 as in (ii). Hence, we obtained

0y = Y RU(),2) 0, U(2) + Q(U(2), ),

for some analytic m row vector Rl , and scalar (5. Stacking these identities over all | 5| < k—1,
we obtain a first-order quasilinear system

n—1
05,U =Y Bi(U(x),%,24) 0,U + Bo(U(2), 7, 2,), (2.12)

J=1

where Ej R™ x R*"! xR = M,,xm and EO :R™ x R*! x R — R™, with Cauchy data
U(Z,0) = 0. To remove explicit x,,-dependence in the coefficients, adjoin one more component
Upns1(x) := ,, and define

u(z) == (U(x), Upsi(z)) € R™, m=m+ 1.

Then (2.12) becomes

n—1

Op,ut =Y bj(u(x), &) Oayu + bo(u(x), 7), (2.13)

J=1

with Cauchy data u(z,0) = 0, where b; : R™ x R"™" — My forj=1,...,n—1and
by : R™ x R"1 — R™ are real analytic and depend only on (u, T).
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Step 2. Universal polynomials. For a multiindex oo = (&,¢) € N~ x N set 9 := 9594 and
la| = |&| + q. Write uw = (uq,...,uz). For j =0,1,...,n — 1 we regard

b; = bi(2,7), (2,%) € R™ x R",

so in the PDE we evaluate b; at (z, %) = (u(z), Z). Let b;; be the ¢-th component of b;, and
define

By 7= 0, 5b34(0,0),

for any multiindex £ in the (z, &)-variables. We claim that for each o = (&, ¢) with ¢ > 0 and
each ¢, there exists a polynomial P, ; with nonnegative integer coefficients such that

92u;(0) = Payi(Bjegp), (2.14)

where the arguments B; 3 range overall j = 0,...,n — 1,/ = 1,...,m, and all 8 with
|8 < |a| — 1. We proceed by induction on ¢. From the Cauchy data we have u(z,0) = 0,
hence 9%u(z,0)|z=0 = 0 for all &. Thus for o = (&,0), 9%u;(0) = 0, which is (2.14) with
P,; = 0. Assume (2.14) holds for all (,¢’) with ¢ < ¢, and fix @ = (&,q) with ¢ > 1.
Apply 02021 to (2.13) then evaluate at « = 0. On the left-hand side we have 9%u;(0). On the
right-hand side, for j > 1, Leibniz’ rule gives a sum of terms
Car (9207, [b,(w, @) )) (257047 " Oryull),  A<a, 0<r<q-1,

where éﬂm are integer positive coeflicients (deriving from product rule with multiindices).
Each factor of the first type is computed by the chain rule on the composition z — (u(z), %)
b;(z,Z). This is a finite sum of terms of the form C'B; 4 5[], 97" u;_(0), where (' is a positive
integer (deriving from the iterated chain rule), 3 is a multiindex in the (z, Z)-variables, and the
factors (9;(5)%‘8 (0) arise from the z-derivatives encoded in 3. In particular, each v(*) = (7%, ¢,)
satisfies g, < r < ¢ — 1, so we can invoke the induction hypothesis to write them in terms of
polynomials of B; 4, 5. For the second factor, 87 947" 8, u ]|y = 05u(0) for some § = (6,¢)
with¢ = ¢—1—1r < ¢ — 1. Since ¢ < ¢ and we again invoke the induction hypothesis.
Thus this second factor is also a polynomial in the admissible B 3. The by-term is handled
in the same way (without Leibniz’ rule). Therefore 0%u;(0) is a polynomial in the B, ; 3 with
|8| < |a| — 1, with nonnegative integer coefficients, proving (2.14) for level q.
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Step 3. Convergence of the candidate solution. Renaming m to m for simplicity, we define
ui(z) == Z %@?ui(()), i=1,...,m, (2.15)
acN"™
where, by the previous step, the coefficients 0%u;(0) are determined by P, , computed at B; ¢ g,
hence are uniquely determined by the PDE and the Cauchy data. To prove that the series (2.15)
converges, we construct a majorant system. Let C, 7 > 0 and define

CT T +Zk 1%k q
g(;}j’ z) = — C’Z ( Jj= 1 J > ,
T_ZJ 15’7] D e 2k >0

which is analytic if Z;le lz;| + > e, |zk| < r. Since bj, by are real analytic near 0, the Taylor
coefficients of their components are bounded in absolute value by those of g, if we choose
C > 0 large and r > 0 small enough. Hence, defining

b; =g My, by = g Uy,

where M; is the m X m matrix with 1 in all entries and U; is the m-vector with 1 in all entries.
We obtain b} > b; and bg > by. Consider the auxiliary Cauchy problem

n—1
O, VU = Zb;(v, T) O, v + by(v, 7), with v(Z,0) =0 on . (2.16)

j=1

The solution is given by (verify it)
. — 2
(7’_27}:133')— 7’—27}:11“ —2nmCrx,
v(x) = i \/( e 2 U, (2.17)
nm

that is real analytlc in all variables near zero. This concludes the proof, since we have, defining

B;,é,ﬂ - a bj (07 0)’

(2,2) 75
107ui(0)| = [Pai (Bjes)| < Pai (|1Bjesl) < Pai(Bjgs) = 07vi(0),
so that v >> u at zero and the Taylor series (2.15) has a non-zero radius of analyticity. Unique-

ness follows because any other analytic solution satisfies the same recursion (2.14), hence has
the same Taylor coefficients at 0 and must agree with u in a neighborhood of . O]

Remark 2.24 (Solving (2.16)). By symmetry we look for v(z) = w(,t) Uy, where U; =
(1,...,1)eR™ & =21+ -+ x,-1,t := 2,. Thenv = 0 on {t = 0} becomesw(f,O) = 0.

Since all components of v are equal, the coefficients depend on v only through > | v, = maw,
and on 7 only through ¢, so b} (v, 7) = T_’?_C;wUl for j <mn —1and bj(v,7) = — = mel
Using 0,,v = OzwU, for j <n — 1 and d,,v = J;wUy, the system reduces to

Cr

Write this as yw — a Ocw = b with a = %, = — Or —, and solve it by the method of

characteristics (that is the same method applied for solving Exercise 1.9, but here we need to
deal with a and b depending on the solution), to find

oy ) V=Y 7)) — mmCr a,

which solves the PDE with v = 0 on {x,, = 0}, and it is analytic near zero.

U17

27



2.4 Limitations and classification 2 The Cauchy-Kovalevskaya Theorem

2.4 Limitations and classification
2.4.1 Limitations of the Cauchy-Kovalevskaya theorem

We list some limitations while looking for analytic solutions and using Cauchy-Kovalevskaya
theorem.

. Exercise 1.10 studies Kovalevskaya’s counterexample for the heat equation d;u = 9?u
on R? with analytic data u(0,2) = 5. With ¥ = {t = 0}, the hypersurface is
characteristic: the condition as g # 0 never holds, independently of the boundary data.
Thus, Cauchy-Kovalevskaya theorem does not apply. However, it can be seen with other
tools (e.g. heat semigroup, analytic energy methods) that the forward Cauchy problem
(for t > 0) for the heat equation is well posed” (for example in the classical spaces C*
with £ > 2) but the backward (¢t < 0) Cauchy problem is ill-posed. This shows a first
limitation: the theorem studies the problem in both forward and backward directions at

once.

« Transport and wave equations have localized effects such as finite speed of propagation”:
a local perturbation on the hypersurface as an influence in a finite spacetime region.
However, analytic functions are globally determined from their local behaviour, so the
analytic framework cannot capture such qualitative properties. This is a limitation of
working in the analytic class.

+ Another limitation of working inside the class of smooth solutions is that we cannot
understand the regularisation effect of the equation at hand. For instance any C solution
to Au = 0 is automatically smooth, and in fact real analytic. This promotion happens
thanks to the special structure of the equation, and it doesn’t happen in general.

+ With Cauchy-Kovalevskaya theorem we cannot exclude the existence of other non analytic
solutions. Uniqueness in the C'* class can fail for non-characteristic Cauchy problems
(except in the case of linear k-th order PDEs where Holmgren’s theorem shows that C*
solutions to non-characteristic PDEs with real analytic coefficients are real analytic near
).

o There is no general local existence result if we drop analyticity assumptions on data or
coefficients.

- Non-analytic Cauchy data. For the (full) Laplace equation A, ;u = 0 in variables
(x,t) with ¥ = {t = 0} which is non-characteristic*', every harmonic solution is
real-analytic; hence its traces u|y, and 0,u|y are real-analytic. Therefore there is
no solution if we prescribe C* but not analytic data on ..

— Non-analytic coefficients. Even with smooth coefficients, local solvability can fail:
Lewy’s 1957 counterexample gives a smooth linear partial differential equation
without solution.

+ The Cauchy problem for elliptic PDEs is intrinsically ill-posed in classical spaces such
as C*, and the analyticity in the Cauchy-Kovalevskaya theorem is hiding this, as
Hadamard’s example shows (see Exercise 2.1). For (92 +0?)u = 0 on R? with u(x,0) = 0
and du(z,0) = cos(wz), the solution is u(z, t) = < sinh(wt) cos(wz). Thus, for w >> 1,
the data are O(1) while u(z, 1) = O(e¥ /w) in L™, so the solution operator is unbounded
as w — 00. Thus, despite applicability of Cauchy-Kovalevskaya theorem, the Cauchy

2For the heat equation with space domain R™ we need some restriction on the growth of u(z,t) as |z| — oo
to guarantee uniqueness.

2IThis is different from A, yu = 0 with ¢ as a third variable, where {¢ = 0} is characteristic and the
Cauchy-Kovalevskaya theorem does not apply.
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problem is not the right framework for elliptic equations. In Chapter 4 we will see that
the boundary value problem is the correct framework.

2.4.2 Classification of PDEs

The Laplace Au = 0 and Poisson Au = f equations have o,(x,£) = [£|? and the cone®
C, = {0} for any = € R". Equations without characteristic hypersurfaces are called elliptic
equations. Trying to capture the essence of the poor behaviour of the Laplace and Cauchy-
Riemann equations in relation to their Cauchy initial-time problems leads to the concept of
ellipticity. Ellipticity means that matrix (a,;) has all eigenvalues strictly positive or all strictly
negative.

The wave equation (u = —anu—l—zz»:ll 8§ju =Ohasoy(z,&) =&+ +&2_, —&2, and
C.={E =&+ +&_,}, the (sound/light) cone. Hypersurfaces whose normal makes an
angle 7 /4 with the direction e,, are characteristic; here x,, = t represents time. The transport
equation ) 7 ¢;(x) Op;u = 0 has 0 (x,§) = &(x) - €, and C, = (). Hypersurfaces tangent
to ¢ are characteristic. These are examples of hyperbolic equations. The idea of hyperbolicity
is an attempt to identify the class of PDEs for which the Cauchy-Kovalevskaya theorem can be
rescued in some sense when we relax the analyticity assumption.

The heat equation 0;u = A, u has principal symbol Z?;ll EandC, ={& = =xy =
0}, so the characteristic hypersurfaces are time slices {¢ = const }; such equations are parabolic.
The class of parabolic equations is a class for which the evolution problem is well-posed for
positive times, but is ill-posed for negative times. The initial condition is characteristic and the
Cauchy-Kovalevskaya theorem fails. The informations is transmitted at infinite speed, and the
solution becomes analytic for positive times (regularisation).

The Schrédinger equation i0;u + Au = 0 has the same principal symbol and is dispersive.
The class of dispersive equations is a class in between hyperbolic equations (local well-
posedness for both forward and backward times, finite speed of propagation) and parabolic
equations (initial conditions are characteristic). To see why it’s called “dispersive,” take the
same 1-frequency ansatz u(t, z) = e!**~*), Plugging into the wave equation uy — Uy, = 0
gives —w? + k? = 0, so w = |k|, instead into Schrédinger i u; + U, = 0 gives w = k2. The
map w = w(k) is the dispersion relation. Here we are interested in the region where |u|? is
concentrated (a localized bump). Its speed is read from how w changes with k. Thus, for the
wave equation dw/dk = £1 (no spreading), while for Schrodinger dw/dk = 2k (depends on
k): different frequencies move at different speeds, so a bump is dispersing.

There are also of course equations of mixed type, e.g. the Euler-Tricomi equation
D2 u = xﬁzyu in R? which is hyperbolic in the region {z > 0} and elliptic in the region
{z < 0}. There are also variants of these classes where some properties are weakened, e.g.
the hypoelliptic equations pioneered by Kolmogorov and Hérmander.

?The principal symbol is a k-homogeneous function in &, which explains the name “cone” for C,.
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3 Functional toolbox

We review Holder and Lebesgue spaces, then introduce weak derivatives and Sobolev spaces,
which measure regularity in an integral rather than pointwise sense. The aims are:

(i) to use Banach and Hilbertian techniques;

(ii) to work in spaces tracking energies or other physical quantities that are minimized in
elliptic PDEs and propagated in hyperbolic PDEs.

We then study approximation in Sobolev spaces, extension and trace results, and Sobolev
inequalities, which trade integrability of derivatives for improved regularity, integral or even
pointwise, of the function. We conclude with compactness results for Sobolev spaces.

3.1 Holder Spaces
Definition 3.1 (Classical C* spaces). Let i/ C R" be open and k € Ny U {oo}.

C*U) := {u:U — R : 0%u exists and is continuous on U V |a| < k },
CHU) == {u € C*U) : sup |0%u(z)| < oo V]a| <k},
zeU

CH*U) = {u € Cf(U) : 9% is uniformly continuous on U V |a| < k }.

Remark 3.2. Let k < oc. C*(U) does not admit a distance induce by a norm.” In contrast,
CF(U) and C*(U) are Banach spaces with the norm

|lul|cr := max sup |0%u(x)].
lel<k zeu

Remark 3.3. Note that C*(I{) is defined via the behaviour on the open set U, not by properties
on U. Accordingly, the set of functions that are C* on I/ is different, on unbounded sets, from
our definition of C*(I{). In particular, C*(R") # C*(R") under our convention (check it),
even though R" = R”.

We turn to Holder spaces that interpolate in between the C* spaces.

Definition 3.4. Let i/ C R" be open and y € (0, 1]. Define the seminorm

gy 11(2) —u(y)]
R A
TF#y

The 0-Holder space with index -y is
C(U) = {u : U — R bounded ‘ [u] con@) < oo}.
For k € N, the k-Holder space with index 7y is

CP (U = {u c CHU) ‘ 0%u € C™(U) for all |a| < /{;}

BWith the C* natural topology, that is u; — wu if for every compact K € U and every |a| < k,
sup,c i [0%(uj — u)(z)| — 0, C*(U) is not normable. Instead it is a Fréchet space: complete and metriz-
able, with topology determined by a countable family of seminorms rather than a single norm.
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These spaces are Banach spaces for the norm (check it)

lellcea@ = lulora + D [054] con -
lo| <k

Remark 3.5. C%' (1) is the space of Lipschitz functions.

Taking v > 1 in the Holder condition forces u to be differentiable with Vu = 0, hence u is
constant.

Holder continuity on U/ with a uniform constant C' > 0 (as in our definition) implies uniform
continuity, which justifies writing these spaces with I/ rather than /.

A norm equivalent to [|ul|cr. g is

el = Nullora + D [054] con oy
|o|=k

3.2 Lebesgue spaces

Definition 3.6 (Lebesgue spaces). Let i/ C R" be open and p € [1, 0c|. The Lebesgue space
LP(U) consists of measurable u : Y — R, considered as equivalence classes up to equality
almost everywhere (a.e.), such that [, |[u[’ dz < coif p € [1, 00) or ess supy, [u| < coif p = oc.
The local Lebesgue space is

LP

e) :={u : U — R measurable on U : u € LP(V) for every open V € U},
where V € U means that the closure V is compact and included in /.

We define the associated norms

oo = { (fulupd)””, for 1<p<oo,

esssup,qy |u(x)|, for p=oc.

LP(U) is a Banach space.”* For p = 2, with (u,v) = [, uv dz, L*(U) is a Hilbert space.

The main theorems of Lebesgue integration theory are the following. Assume {f,}, are
measurable functions.

1. Monotone convergence: If 0 < f; < fo <--- and f, 1T f a.e., then fu fondx 1 fu fdx.
2. Fatou’s lemma: For nonnegative {f,}, [, liminf, f, dz < liminf, [ f,dz.

3. Dominated convergence: If f, — f ae. and |f,] < g ae. with g € L'YU), then
fu fndr — fufdx.

3.3 Weak (generalised) derivatives

In order to measure regularity through integrals and define Sobolev spaces, it is natural to
introduce a generalised notion of differentiability.

Definition 3.7. Given U/ C R" open, u,v € Llloc(u), and o € N, we say that v is the o weak
derivative of u, denoted by v = D%u, if

Vo e C*(U), /u@?gpdx = (1)l / v de.
u u

24 LP

1oc(U) is not normed but is Fréchet.
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This means that the weak derivative verifies the formula of integration by parts, provided we
avoid boundaries (using compact supported test functions).

Remark 3.8 (Extension to distributions). A distribution on an open set i/ C R" is a continuous
linear functional 7" : C2°(U) — R; the space of distributions is D’'(U). For any multi-index
o, the distributional derivative 0°T € D'(U) is defined by (9°T, @) := (—=1)I* (T, 0*¢) for
¢ € C°(U). This extends the weak derivative definition for L] (/) functions to D'(U). As an
example, let H(z) = 0 forz < 0and H(xz) = 1 for x > 0. Then D, H = &, the Dirac Delta, in
D'(R); hence H has a distributional derivative but no L{  weak derivative, since dy ¢ L{ .(R).

loc loc

Remark 3.9. The weak derivative, when it exists in L], (), is unique. This follows by the

loc

fundamental lemma of the calculus of variations, saying that if w € L, (i) and [, wp dz =0

loc

for all ¢ € C®(U), then w = 0 a.e. in Y. In particular, if u € C*(U) and |a| < k, then the
weak and classical derivatives coincide (prove it).
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Definition 3.10. Let 2/ C R" be open, k € N, and 1 < p < co. The Sobolev space W*P(Uf) is
WHP(U) := {u € Li,,(U) : D*u exists and D*u € LP(U) for all || < k}.

It is equipped with the norm

1/p
(D IDoulgy) s 1<p <,

[ullwrr@y = § o<k

D“ = 00.
E}lg” ul| oo ), p =00

We also define the subspace W)™ (U) as Wy*(U) = C> (Z/{)H'”Wk’p(“), that is the closure of
C2(U) in WP (U).

Remark 3.11. (W*P(U), |- [[y.00)) is @ Banach space. The completeness of (WEPU), |- lwes)
follows from the completeness of L (/) and the fact thatif u; — wand D%u; — v, in L?(U) for
all || < k, then v, = D®u. For p = 2 we write H*(U) := W*2(U) and HF(U) := WE2(U);
these are Hilbert spaces with inner product (u, v) gy 1= 3| 4<k J,; D*u(x) Dv(x), dx.

Example 3.12. Let u(z) = |z|~* on B(0,1). One checks that u € L'(B(0,1)) if and only
if s < n,and w € WH(B(0,1)) if and only if s < P, with Dy u(v) = —sz;|z[~>?
(the weak derivative) in B(0, 1). In particular, if we require u € WP(B(0, 1)) with p > n,
then the restriction s < “=£ shows that u is actually continuous; this is reminiscent of the
Sobolev(-Morrey) inequalities that we will discuss later.

3.4 Approximation in Sobolev spaces

From our definition of W*P via weak derivatives, it is not obvious that Sobolev functions can
be approximated by regular ones: Meyers—Serrin theorem® (which is Proposition 3.14 (5))
shows that C*° is dense in W*®. This lets us prove statements for smooth functions and then
take limits to get the analogue statement for Sobolev functions.

Definition 3.13. A family (¢.).~0 C C2°(R") is a standard mollifier if, for every € > 0,

supp ¢ C B(0,¢), ¢ >0, ¢e(x) dr = 1.
RTL

IfU C R"is open and u € Li. (U), the mollification u. : U. — R of u at scale ¢ is

loc
s = ¢ xu on U.:={x el :dist(z,dU) > c}.

Proposition 3.14. LetU C R" open, k € N andp € [1,+00).

1. There exists a standard mollifier.
2. Ifu € L}, (U), the mollification u. € C*(U.) withu. — w in L}, .(U), i.e. in L*(V) for

loc

anyV CC U, and almost everywhere inU.

ZHistorically, Sobolev spaces were defined either via weak derivatives or as the closure of smooth functions;
the Meyers—Serrin theorem shows these definitions coincide. See Meyers—Serrin “H = W” (1964).
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3. Ifu € C*(U), then, for || < k, 0%u. — 0% uniformly on compact subsets of U.

4. (Local Sobolev smoothing) Ifu € W*P(U), then u. — u in WP (U), i.e. in W*P(V) for
any openV CC U.

5. (Global approximation away from the boundary) IfU is bounded and v € W"P(U), then
there exists a sequence u; € C™(U) N W*P(U) so that u; — u in WHP(U).

6. (Global approximation up to OU) Given U bounded with OU being locally the graph of a
Lipschitz function, and u € W*P(U), there is a sequence u; € C=(U) such thatu; — u
in WkP(U).

Proof of Proposition 3.14. 1. Use for instance p(x) = Cexp(—(1 — |z|*)™') on B(0,1) and
¢ = 0 outside B(0, 1) with a well-chosen C' > 0, and rescale it ¢.(z) = ¢ "p(z/e).

2. Using the definitions it is easy to see that w. is continuous, and then differentiable in

any coordinate direction {e;}7_, by taking the limit as h — 0 of the difference quotient

h~[u.(x + he;) — ue(x)]. Then iterate the argument and deduce 9*u. = (9%p.) xu € C°°(Uy).
Fix V € U and set ¢y := 5 dist(V,0U) > 0. For 0 < ¢ < gg and = € V we have

wla) = u(@) = [ p0) (ula ) - ul)) dy

hence, by Fubini,
|ue — ullpy < / () |7—yu — ul| L1 vy dy, where Tu(z) :=u(z+h). (3.1)

We recall that ||7,u — u| 1) — 0 as h — 0 (continuity of translations in L] ). Indeed, choose
WwithY € W € U and ¢ € C°(W) with ||u — ¢[[ 10y < € (density of smooths in L'). For
|h| small so that V + h C W,

[Thu —ullpoy < |lma(w = &) ||y + [[Td — Sy + |0 — ull 1wy < 26 + ||700 — 9|l 1)

Since ¢ is smooth with compact support, 7,¢ — ¢ uniformly, hence in L'()); thus the last
term is < ¢ for |h| small. Therefore ||7,u — ul|z1) — 0, and because supp p. C B(0, ) and
[ ¢ =1, the right-hand side of (3.1) tends to 0 as ¢ — 0. This proves u. — win Li, (U).

For almost everywhere convergence, note that . > 0, f . = 1, and supp p. C B(0,¢)
give

) (@) < [ ) e =) = o)y < [ fute =) = o)l

By the Lebesgue differentiation theorem (the averages of u over smaller and smaller balls
tends to u(z) for almost every point z, the Lebesgue points), the right-hand side — 0 at every
Lebesgue point of u. Hence u.(x) — u(z) for ae. x € U.

3.Letu € C*(U) and fix V € U. Set g := 3 dist(V,0U) > 0,50V C U. for 0 < & < &. For
any multiindex |a| < kand 0 < € < &,

a?us = a:?(%% *u) =p.x0% onV,

since u € C* and . € C° justify differentiation under the integral. Define, for r € [0, &),
the modulus of continuity

wa(r) := sup [0%u(z — h) — O%u(z)|.
xcV
Jhl<r
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Because 0%u is uniformly continuous on {z € U : dist(z, V) < g4}, we have w,(r) — 0 as
r — 0. Using supp p. C B(0,¢) and [ . =1,

sup |8°‘u5(:1:) - (3o‘u($)| < / Ve(y) wa(ly]) dy < wa(e) >0 as e —0.
eV B(0,¢)

Thus 0%u. — 0“u uniformly on V, and since V € U was arbitrary, on every compact subset
of .

4.Fix V € U and set ¢ := 5 dist(V, dU) > 0. It is enough to prove ||0“u. — d*ul|Lr(vy — 0.
as ¢ — 0, since summing over || < k yields u. — u in W"?(V). For 0 < € < &g and |o| < £,
using Fubini and the definition of weak derivatives, 0%u. = 0%(¢. * u) = . * 0w on V. For
f € Lt _(U), by Jensen’s inequality (since ¢, > 0 and [ ¢. = 1),

loc

oo £ = flsow = [ @)t = ) ]

< / () 17— f — Fllinn dy.

Lr(V) —

Translations are continuous in L} _(as for p = 1 above), hence the right-hand side — 0 as

¢ — 0 because supp ¢. C B(0,¢). Apply this with f = 0%u for each |o| < k and use the
identity above.

5. Fix 0 > 0. Decompose U = Uy>oV, where we define
Uy = {x cU : dist(z,0U) > (1}, Vo i=Ups \ Uy for (>1,

and choose Vo with U \ U5, Ve € Vo @ U. Let (§)s>0 be a smooth partition of unity
subordinate to (1,).?° For each ¢, pick 0 < &, < 1 dist()V,, 0U) such that, by (iv),

= CxU) N WU <0

v 1= e, * (§eu) € C(U) N ), |ve = Seullwrr@y < oG
Here we are smoothing a localized version of u. Set u(®) := Y ¢>0 Ve- The sum is locally finite,
hence u'®) € C=(U) N W*P(U), and
4]
5 _ _
o= ey = | S =), <D 5w =

>0 >0

Choosing § = 277 and uj = u®™) yields u; — w in WkP(U).

%A smooth partition of unity subordinate to (V)s>0 is a locally finite family (£¢),>0 C C°(U) with 0 <
& < 1,supp& C V, foreach /, and )" ,. & (x) = 1 for all z € U. Locally finite means every = € U has a
neighborhood meeting only finitely many supp &, so the sum (and its derivatives) are well defined.
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LECTURE 12

6. Step 1. Partition of unity. Let Y C R" be a bounded Lipschitz domain. Cover 0l by
finitely many boundary charts { B;})\_, and one interior set By € U, so that for £ > 1 in local
coordinates we have

UNB,={(z',t) € By: t >Ty(x")}, 'y Lipschitz with constant Lip(I';) =: £,.

Pick a smooth partition of unity {1}, with supp ¢, C B, and Zévzo Yy =1onlU.
Step 2. Mollification and translation on each piece. For the case { = 0, we just choose ¢ > 0
with e < dist(supp ¥, OU) and let p. be a standard mollifier. Then

pe * (hou) € C°WU) and  p. * (You) — You in WHP(U) ase — 0.

A plain convolution near OU would ask for points outside U/ to evaluate u, which is not allowed.
Fix ¢ € {1,..., N}. Denote translations by 7,u(x) := u(x + h). For € > 0 small enough (so
the balls of radius ¢ used below stay inside By), define on U N By

4 e )} 2) = [ o) o)z = -+ M) .

n

This is the usual convolution evaluated after the vertical translation 7y, i.e. a push into /.
The inward translation 7)., possibly avoids any exterior sampling, so we can smooth using
only interior values. We must check that the e-ball used by the standard mollifier stays inside
U after this push.

Step 3. Checking that p. * Ty,ce, (Veu) requires evaluating u only on Y. Thanks to the
Lipschitz boundary we have that there exists A\, € R so that

Vo € O0UN Bz, 1), Ve > 0small,  B(z+ Meey, £) CU.

To see this, fix (z/,[(2")) € U N B(xy, 1) and set A\, := £, + 2. For ¢ > 0 small, any
y= (Y yn) € B((x’, Cy(z) + )\z€€n),6) satisfies

|y — 2’| <e, yn > Lo(2") + (A — 1)e.
Since I" is Lipschitz we have
Fg((?/) S Fg(ZE,) + £e|y/ - ZE,| < Fe(l‘/> + 248,

hence
Un —Le(y') > (A — 1= Lp)e =€ > 0.

Hence the whole ball B((z/,T¢(z') + Aie,), €) lies above the graph I'y, this it is inside U.
Consequently, p. * Ty,ce, (1) only evaluates values of u inside ¢ and

Pe * Thpeen (wéu) € COO(Be N U)

Step 4. Construction of the global approximation. Set

N
e = pek (You) + Y pe# Taee, (o) € CZ(U).
=1
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Since Zé\f:o Yeu = u, it suffices to pass to the limit on each piece. The convergence in B, was
noted above. Fix ¢ > 1. Using mollification and the W]’Zf continuity of translations (which
follows from the L{ . case) we get

1< * Tace, (Vo) — Ypullwrpey —+0 as e — 0. (3.2)

Precisely, for any || < k write

Da(pa * Theen (ZD@U) - ¢£u> = Aa,a + Ba,aa

where

Aa,a ‘= Pe ¥ T)\eenDa(@/)gU) — Theen, Da(@”“)a Ba,a = TAEenDa(¢€U) e (¢éu>

Then || A; o|| L@y — 0by mollification (part 4. of the proposition, with & = 0), and || Bz o || @) —
0 by translation continuity (apply Leibniz rule, which follows from Exercise 2.5, to D(¢,u)
and use that D", € C°). Note that all these convergences are on supp ¢, € Y. Summing
over |a| < k gives (3.2).

Finally, summing over / gives ||u. — u||y».r@y — 0; then choose €; — 0 and set u; := u., €

o= ().
O]

3.5 Extensions and traces

In this section we extend Sobolev functions to larger domains with the Sobolev norm controlled
by the original one. We also show that, unlike general L? functions, Sobolev functions admit a
well-defined trace (i.e. a restriction) on lower-dimensional, sets (of null Lebesgue measure).

Theorem 3.15 (Extension for W'P). LetU C R™ be a bounded C* domain and letV C R"
be a bounded open set withUd € V. For any p € [1,00) there exists a bounded linear extension
operator

E: WY U) — WP (R")
such that for everyu € WP (U),
E(u)=u ae onl, supp E(u) C V.
Remark 3.16. Boundedness means there is C' = C'(U,V, p) > 0 with
1B () oy < C ullwrogey for all u e W),

We call E the extension of u to R™. For (essential) support we mean, as for Lebesgue functions,

supp E(u) :==R*"\ |J{U C R" open : E(u) =0a.e.onU }.

Proof. Step 1: Reflection Fix 2° € OU and assume Ol is flat near 2, i.e., there exists a ball B
centered at 2° with

oun B ={z, =0}, B*:=Bn{z, >0} CU, B™:=Bn{x, <0} CR"\U.
Assume v € C'(B7) and define the higher order reflection of @ from B to B~ by

u(a', ), T, > 0,

(3.3)
—3u(r, —x,) + 4u<x/, —%) . xTp <0,
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where ©’ = (x1,...,x,_1). Note that this extension is linear in u. Check from (3.3) that @ is
continuous across {r,, = 0}. Then, we check that is C' across {z,, = 0}. Indeed, from the
definition we see that the tangential derivatives are continuous, and for the normal derivative
we get, for z,, <0,

Op,u(2! ) = 30, u(2!, —xy,) — 28xnu<x —%) :
so, as x,, — 07, it agrees with 0,, u(2’,0). Therefore u € C'(B) and agrees with v on B™.
Using (3.3) and the chain rule one obtains
lallwrrs) < Cllullwiss), (3.4)

for some C' = C'(n, p) independent of w.

Step 2: Flattening the local C' boundary. Fix 2 € OU. Since OU is C', there exist a ball B
centered at 2° and a C''-diffeomorphism ® : B — ®(B) with C" inverse, such that, writing
y=®(z) and z = ®~1(y),

POUNB) ={y, =0}N®(B), SUNB)={y, >0} ND(B).
Moreover, by shrinking B if necessary, we may assume
0 < co < |det D®(z)|, |det DO (y)| < Cop and || D®| zoco(p) + | DO || oo (a(m)) < M,

for some constants ¢y, Cy, M > 1 depending only on the chart.
Let uw € C'(U N B) and define

vu(y) = u(®(y)) fory e ®(B)N{y, > 0}.

Since the boundary is flat in y coordinates, apply Step 1 on ®(B) to obtain an extension
v € WHP(®(B)) with

lwro@) < Crlvlly,, (eB){yn>0})’ G3)
where C; = C(p,n). Pull back to = coordinates by setting
u(zx) :=0(P(x)) forx € B.
From the chain rule we get the estimates
lilliey = [ @E@)Pdo < 5 / 56) dy,
®(B)
IVilley = [ |DBa) VE@E)] o < 65" 1DV, [ Vi dy
®(B)
hence
lllwirzy < CollOllwie@s)), (3.6)
for some Cy = Cy(p, n, ¢y, M). Similarly, for v(y) = u(® *(y)) on ®(B) N{y, > 0},
101, (2(B){yn>0}) < Gyllullwir@ns), (3.7)
for some C5 = C5(p, n, Cy, M). Combining (3.5), (3.6), and (3.7) yields
lallwiom < Clulwiswns, — C=Ci1C2Cs, (3.8)

where C = C (p,n, co, Co, M). Finally, note that & = u on U N B by construction. This gives
a local bounded linear extension on B.
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LECTURE 13

Step 3: Partition of unity Cover OU by finitely many balls B, ..., By. Also, choose
asetBy € U so that U € By U | JY. \ Bi. Take a partition of unity {{;}}Y, C C2°(B;) subordi-
nated to { B;}7_, with " & = 1 onU. For u € C'(U), extend each y,;u fori > 1 to E;(&u) by
Step 2 from B; NU to B;, and set

N

Eu:=Y_ Ei(&u),

=0

where Ey({ou) = &u is just the identity from By into itself. Choosing the cover inside V and
shrinking supports if necessary gives supp(Fu) C V. Finite overlap and (3.8) give

||E’LL||W1,?(R”) <C ||UHW1p(Z,{)

Step 4: Density. Finally we remove the assumption v € C'(Uf) by a density argument.
By the previous theorem (since 90U being C? is in particular Lipschitz) there is u; € C*°(U)
converging to u in W'?(U{). Since E is linear and bounded we deduce that Fu; is Cauchy in
WhP(V) and therefore converges to some Eu with the expected bound. The limit does not
depend on the approximation sequence since for two sequences we have

HEu — FEu —HE(u —u) <C’Hu —u —0 as 7 — o0

oy [ Mo

which concludes the proof. O

Remark 3.17. One can construct an extension operator in W*? for k > 2. The argument is
similar with an appropriate (and more complicated) reflection: in the flat case it has the form
o(y) = Z? Leu(@, =yl /j) on B_ == B(y, ") N{y,, < 0} with well-chosen coefficients ¢;’s.

Theorem 3.18 (Trace theorem). LetUd C R"™ be open, bounded, with C' boundary, and let
p € [1,00). There exists a linear operator, the trace operator,

T:Wh(U) — LP(OU)
that is bounded, i.e.
ITull ey < Cllullwiewy — forallu € WH(U),

where C = C(n,p,U) > 0. Moreover, for everyu € WP(U) N C>=(U) one has Tu = u|ay.

Remark 3.19. 1. For u € C™=(U), the trace coincides with the pointwise restriction u|ay.
By density of C°(U) in WP (U) (for OU being C), this identifies the trace uniquely.
2. Ifu € WkP(l{), then traces exist for all derivatives up to order k — 1: for each multiindex
a with || < k — 1, one can define a bounded operator T, so that T,,(D%u) is the trace
of D on OU.

3. Zero trace characterisation: u € W, ”(U) if and only if Tu = 0 in LP(0U). Indeed, if
u; € CX(U) with u; — w in WHP(U), then T'(u;) = 0 and boundedness of T gives
T'u = 0. The converse follows by localisation, flattening the boundary, and a partition
of unity arguments (see Evans, Sec. 5.5, Thm 2).
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4. Sharp regularity (for 1 < p < 00): if s > 1/p, there is, considering fractional derivatives
(cf. Exercise 2.13) a bounded trace 7' : W*P(Uf) — W '/PP(9U), so the loss of
differentiability is 1/p. More generally, for traces onto a C' submanifold of codimension
m, one requires s > m/p and the loss is m/p.

Proof of Theorem 3.18. The proof follows the same structure as for the extension theorem, i.e.
we construct the trace operator 7" by a covering argument, reducing locally to the flat case,
using u € C*°(U) and relaxing the latter by density. This reduces the proof to the flat whole
space case (the partition of unity localises).

Let B C R™ be a ball centered on the hyperplane {x,, = 0}, and set B* = BN {z,, > 0}
and ' = 0BT N {x, = 0}. Fix ¢ € C°(B) with0 < ¢ < 1 and ¢ = 1 on a smaller ball
B' € B.Foru € O®(B") setw := ¢u and F := |w|Pe,,. Since w vanishes near OB, using the
divergence theorem and the Young’s inequality we get

[ull o s :/ |u|pda:/|w|pd0:—/ F-vdo = V-Fdx:/ O, (|w|P) dx
rNB/ r oB+ Bt Bt

:/ plw|P~ 0, wsgn(w) dx §/ ((p—1)|w|p+|8xnw|p> dx
Bt Bt

<cC / (10w +1@c.0)u + 00,,uP) do < € [ (up +[9up) da
Bt
< Cllulfangsn

By density of C°>°(B+) in W?(B*), the estimate extends to all u € W'P(B™*). O

3.6 Sobolev inequalities

The Sobolev inequalities are a collection of inequalities that “trade” integrability of weak
derivatives for classical differentiability. The basic result is the Gagliardo-Nirenberg-Sobolev
inequality (GNS). Before we state and prove it, we need the following (Loomis-Whitney)
lemma.

Lemma 3.20. Letn > 2 and f1,...,f, € L" ' (R"™). Forx = (xy,...,7,) set ; =
(T1, .y Ti1, Tig1, - - Tn) € RPN Then f(z) .= [[;-, fi(Z:) € LY(R") and

A1z ey < H | fill Lr-1 -1y
i=1

Proof. By replacing f; with |f;|, assume f; > 0. For n = 2 we have f(z1,x2) = f1(z2) fa(21),
hence || f|[z1®2) = || fillerw) || follz1(r). Assume the claim true in dimension n > 2 and
consider fi,..., for1 € L"(R™). Fix 2,41 € R and write F(-,z,+1) = [[._, f:(Z;) and
G Tng1) = for1(Tng1) F (-, Znyr). By Holder on R”™ with exponents n and ¢ = ",

. |fCzng)] < M fasalln@e) |G Tngr)|| Logny.-

Applying the inductive hypothesis in dimension n to g; := f;(+, z,11)? € L" }(R"™!) gives
1 E (s Zng1) | Laeny < H 1 fi (s Znga) || Lr g1y,
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Therefore [o, [f(-; Zni1)| < | fasalln@r) Ty [1fi(5 @nga) || o (mn-1). Integrating in 2,4 and
using Tonelli plus generalized Holder (with n factors of exponent n), we obtain

n+1

n 1/n
x5y < Wl T ([ 15 men) aosy domen) ™ = T Ml
i=1 i=1

This is the desired estimate with n replaced by n + 1, completing the induction. O

Theorem 3.21 (Gagliardo-Nirenberg-Sobolev inequality). Letn > 2 and p € [1,n). Write
p* = n"—f; (equivalently, 1/p* = 1/p — 1/n). Then:
« (Global, R™) There exists C = C'(n,p) > 0 such that

|l Lo vy < C' || D] oy for allu € WHP(R™).

+ (Local away from the boundary) If U/ C R" is open and bounded, there exists C' =
C(U,n,p) > 0 such that

el @y < ClIDulleey — forallu € Wy (@),

« (Local up to the boundary) IfUf C R" is open, bounded with C' boundary, there exists
C =C(U,n,p) > 0 such that

lull Lo @y < C lullwrrwy for allu € W'P(U).

Remark 3.22. 1. Since p* = % > p for p < n, the embedding gives a genuine gain of
integrability (evident in the local statements, where the L? spaces are nested).

2. On R™, the estimate controls u only modulo additive constants via || Du|| .»; the assump-
tion u € WHP(R") (in particular u € LP) rules out non decaying behaviours.

3. The W, ”(U) case, in particular gives | u|| oy < CllDull sy, which is an instance of
Poincaré inequality.
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LECTURE 14

Proof of Theorem 3.21. We first prove the global estimate on R" assuming u € C}(R").
Step 1: the casep = 1. Fix i € {1,...,n}. By the Fundamental Theorem of Calculus,

= / O, (X1, .oy Yiy o ooy ) dy;,
so that |u(z)| < ¢;(Z;) where
—+00
gz(fiz) Z:/ lﬁziu(:ﬁl,...,yi,...,xn)‘dyi, (Z’Z = (xl,...,xi_l,xiﬂ,...,xn) ERn_l.

. 1
Let f :=|u|»7 and f; := g;*~". Then f(z) < [[._, fi(#;), and by Lemma 3.20,

”fHLl(Rn) S H Hf’iHL”_l(R"_l)-
i=1

Therefore,

ullj i = Il <H||gz||L1 — Hllaﬁuny ey < G IVl i

for some C),, depending only on the dimension n. This gives

L%(Rn)

p(n—1)

Step 2: the casep € (1,n). Let y := > 1 and set v := |u|?. Since u € C}(R") and
v > 1, we have v € C}(R") with Vv = 7|u|[""!sign(u) Vu. Applying the p = 1 estimate

from Step 1 to v gives

p(n=1)
|| ul Ln;_np . 0]l 2 ’ < G [[VY||piny = Cn /Rn |u|"" | Vu| d,
By Hoélder with exponents (1%, p) and using (v — 1) =025,
1 1 el
1 < Nl g 9y =l 2, Ve

We obtain

p(n=1) 1) n(p=1)

" on <, "on \Y ny.

Jull %2, < Cor el [Vl

n(p 1)
-p

If HuHL Lz = ( there is nothing to prove; otherwise divide both sides by [|ul| " s and get

HUHLP*(R") < On,p “VUHLP(R")> p* = ) Vue Ocl(Rn)'

Step 3: density and local versions. Since C>°(R") is dense in W1?(R"), the global inequality
extends to all u € W'?(R™). Indeed, we can approximate by truncation and mollification: take
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uj := (nr,u) * pe, with cut-off nr, € C2°, nr, = 1 on B(0, R;), R; — 00, and p., a mollifier
with £; — 0; then u; — win W1P(R").

Local away from the boundary. If u € C°(U), let @ be its zero extension to R™. Then
a € WH(R™) and [|a]| o+ gy = lullpor @0y IVl Lr@ny = |Vl zo@). Applying the global
inequality to @ yields ||u| ;o 1) < Crnpll V|| Lo for allu € CZ°(U), and by density of C°(U)
in W, ” (1) the estimate extends to every u € W™ (U).

Local up to the boundary. Thanks to the assumptions on U/, we can apply Theorem 3.15
giving the extension operator E. Applying the global inequality to F'u we obtain

lull e @y < NEull e gy < Cup | Bullwrio@ny < Cnp Coxt ullwrowy
[l

Remark 3.23 (Critical case p = n). Atp = n (and n > 2) one does not get L*° control (as
expected since p*(p) — oo asp — n): eg. u(x) = log log(ﬁ) on B(0,e™!) C R" lies
in WhB(0,e71) \ L>®B(0, e ). It holds the endpoint embedding W'"(U/) into the space
BMO(U) of functions of bounded mean oscillations, a space strictly between ), _  L? and
L.
Remark 3.24 (1D case). The case n = 1 is excluded since we need p > 1 (to work with Banach
spaces) but p* = n"—_";) is finite only when p < n. In 1D, we get an L* bound: for I finite
interval and u € W, *(I) we have |[u|| s~ < Cr,l|Dullrer). On R, if u € W (R) then
||| Lo (m) < || Dul|L1(r) (see the book by Bre21s for more detalls on the 1D case).

With higher integrability of the function and its derivatives, specifically when p > n we
gain not only greater integrability and the expected boundedness but also pointwise regularity,
as the following theorem shows.

Theorem 3.25 (Morrey inequality). Letp > n andy =1 — -

« (Global, R") There exists a constant C' = C(n,p) > 0 such that for every u € C°(R"),
HUHCON(RT) S C ||u||W17p(]Rn).

Thus, every u € WYP(R™) has a representative in C*7(R™) (i.e., there is a version of u,
equal to u almost everywhere, that belongs to this Holder space).

« (Local version up to the boundary) IfUf C R" is bounded with C'' boundary, then there
exists a constant C' = C(U,n,p) > 0 such that for everyu € C=(U),

[ull con @y < C llullwe)-
Thus, every u € WP (U) has a representative in C*7(U).

Proof. Global case. By density, prove it for v € C2°(R™). For x € R", r > 0, and any center
m with © € B,(m), set the average t,,, = ‘ Blr| | By (m) U- By the Fundamental Theorem of
Calculus,

u(x) —u(z) = /0 Vu(z +t(z — x)) - (z — 2) dt.

Averaging over z € B,(m), using Fubini and |z — z| < 2r

< i o [ 7 )l
|B|//r |Vux+tz—x)‘dzdt
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With the change of variables y = = + t(z — =) we get

x4+ t(B,(m) — ) = By(z + t(m — x)) C B,(m),

. . . o l - l
hence, using Holder with 1 = 5 + (1 p),
_ 2r ! o
ju(@) = | < 75— [ 1 [Vu(y)| dy dt
|B7" | 0 Bir(z+t(m—2a))
2r [1 n _1
< o | Bl T [Vl Lo s, m) dt
1B:| Jo

_1 ! _n
=2r|B,| » </ tw dt) [Vl Lo (B, (m))
0

< Cr [V ul| o s, o).
since p > n. Now take m = ¥ and r = 2|z — y|, so z,y € B,(m):
[u(@)—u(y)| < [u(@)=tm, [+ w(y)=tm, | < Cr 77 ([ Vul| o,y < Cle—y|' ™7 | Vul o).
Also, we get the L bound. Set m = x and r = 1, using the estimate above and Holder
u(2)] < fu(z) = tap| + [tar] < Cllullyrmgn

This gives the claim for C°(R"), hence for W'?(R™) by density.

Local case. From the assumptions on U Theorem 3.15 gives E : WP(U) — W'P(R") with
Euly = vand || Eul|wir@n) < Cext||t||wir@. Letting u € C°(U), we apply the global case
to Lu:

[ull oy < [1Eullgon@my < CllEullwir@n < C Coxllullwiva.

By density of C*°() in W' () we get the local statement.
O

Remark 3.26. By applying the previous inequalities to u and its derivatives, one establishes
higher order versions showing that functions in W*® belongs to some L? and/or C*? spaces.
These are collectively the “Sobolev inequalities”.

Example 3.27. If u € W2?(U) for U C R® we have u, Vu € W'%(U), thus Gagliardo-
Nirenberg-Sobolev inequality gives u, Vu € L°(U) and hence u € W%(U). Applying Morrey
inequality we get u € C%V/2(Uf).
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3.7 Compactness in Sobolev spaces

Theorem 3.28 (Rellich-Kondrachov compactness theorem). LetUd C R" be a bounded open
set with C'' boundary and letp € [1,n). Set p* = . Then for every q € [1,p*) the embedding
WhP(U) — LI(U) is compact; i.e., bounded sets in WP (U) are relatively compact in L1(U) (i.e.
the closure is a compact subset of L4(U)).

In a metric space, relative compactness can be checked through sequences. Thus, rephrasing
the statement: every bounded sequence in W1?(I{) has a subsequence that converges in L?({/).

Remark 3.29 (Compact vs. continuous embedding). Compactness implies continuity: if the
inclusion 7 : W'P(U) — L9(U) is compact but not continuous, then i is unbounded, so there
exist u, with ||u,|lw1» < 1and ||i(u,)||Ls > n. However, compactness means ¢ maps the unit
ball into a relatively compact set, so (i(u,,)) has a convergent (hence bounded) subsequence, a
contradiction.

Remark 3.30 (Rellich-Kondrachov in practice). On a bounded domain, uniform a priori bounds
in a Sobolev space, for example H'({/), guarantee that from any approximating sequence
we can extract a subsequence that converges in L?(U{). This turns uniform estimates on
approximations into actual limits, it reduces existence questions to proving such uniform
bounds. Also, it will be crucial to prove the Fredholm alternative in Chapter 4.

We recall Arzela—Ascoli Theorem: Let K C R” be compact and F C C(K,R) be uniformly

bounded and equicontinuous. Then F is relatively compact in (C(K), || - ||o); equivalently,
every sequence in F admits a uniformly convergent subsequence on K.

Proof of Theorem 3.28. Step 1: Extension. Consider a bounded sequence (u;) in WP (). From
the extension theorem there exists an extension v; := Fu; bounded in W!?(R") with compact
supports all included in a given bounded open set V with &/ € V. Fix also an open set V¥ with
V € W and set ¢, := dist(V, W) > 0. Given (¢.) standard mollifiers, define v§ := . * v;.
Then for every 0 < & < ¢ one has v5 € C°(W) and supp v; C W for all j. (Here and below,
all norms are taken on the indicated set; since suppv; C V, L*(R") and L?(V)-norms of v;
coincide.)

Step 2. Fix 1 < g < p*. We claim that

Sl;p |5 — vl aqv) — 0.

By density, assume v; € C2°(V); by Step 1, suppv; C V and sup; || Vv;|r(vy < 0o. With a
standard mollifier (),

1
5@ —u@l=| [ e -u@)a| <] o) [ TuGsliy

Integrating in x over V and using Fubini,
105 = villrwy < elVusliiw) < CellVusllmw,

where the last inequality uses the boundedness of V and Hélder. Interpolating between L'(V)
and L?" (V) with Holder inequality, we have

[Pl < 1AW £, with 6= 22" € (0,1).
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Using the Gagliardo-Nirenberg-Sobolev inequality on R" (which applies to v§, v; since they
are compactly supported) and Young’s inequality for convolution (because Vvi = ¢. * Vv,
and ||| = 1),

o5 = villzawy < 1105 = villLs gy 105 = vill 2

< (CelVosllo)” (51l o + [lvsll o )=

< (CellVjllze)” (CIVYS e + ClI Vs l2)

< (CelVosllom)” (ClIVY; o)) ™" = C” [ Vujlla).
Since sup; || Vv;|r(v) < 00, it follows that v§ — v; in L¢(V) uniformly in j as € — 0.

Step 3. Compactness by Arzela—Ascoli. Fix e € (0,&p). For each such fixed ¢ > 0, (v) is
equibounded and equicontinuous on W:

V5| oo oy < |lellzos lvsll 21 vy, VU5 [l ooy < IV @el| oo |Vl L1 vy

and ||v; |21 vy < C'||v;]|1e(v)- By Arzela-Ascoli on the compact set W, for this fixed ¢ there is
a subsequence (v° ) converging uniformly on W; hence, for any § > 0 and k, ¢ large enough,

HU;C — U]E'[HLQ(V) < 5/3.
Choose ¢ € (0,¢p) so that, by Step 2,

sup |05 — vjllaqyy < 9/3.
J

Then for k, ¢ large,
v, — jllLawy < llvje — 5, Ly + 1105, — 05, [lLaqy + V5, — vjllaqv) <9,

so (vj,) is Cauchy in L9(V), hence convergent in L9(V) to some v € L%(V). Finally, since
v; = Fuj and v; = u; a.e. on U, by restriction we obtain

uj, :Ujk‘u — U‘u in LY(U).
O]

Remark 3.31 (Failure at the critical exponent). The embedding is not compact at the critical
exponent p* = & for 1 < p < n. To see it, take any nonzero u € CZ°(B(0,r)) with
B(0,7) C U and define v.(z) := e /P u(x/e) for 0 < ¢ < 1. Then suppv. C B(0,er) C U
and [|Vue||r = ||Vull e, ||Jve|| o = ||ul| = > 0. Hence {v.} is bounded in W'?(1/) and has a
constant ||v.||;,+ > 0, while v.(x) — 0 for every fixed = # 0, so v. — 0 almost everywhere. If
the embedding W'?(U) — LP" (U) were compact, some subsequence would converge in L .
Passing, if necessary, to a subsequence of that subsequence, we may assume ||v., ||~ — 0,
contradicting ||ve, ||+ = ||ul| o+ > 0.
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4 Ellipticity

We always consider / C R" open bounded and with C' boundary in this chapter.

4.1 The notion of ellipticity

At the most general level, we have seen in Chapter 2 that ellipticity corresponds for a linear
operator to the absence of characteristic surfaces, i.e. o4(z,§) # Oforallxz € Y and £ €
R™ \ {0}. We now write it concretely for second-order linear operators. Such operators L can
be given in two forms, given a;;, b;, B, U — R,

Lu = — Z Or; (Z i, U) + Z biOy,u + cu (divergence form)
i=1

=1 =l
—V-(ADu)
n n
Lu = — Z ;j Gixju + Z b0, u + cu (non-divergence form)
ij=1 i=1

One can navigate between divergence-form and non-divergence form whenever a;; is differen-
tiable by b; = b; — Z;;l Oz, aj;. Note also, supposing 0,0, ,u = 0,,0,,u, we can assume that
the matrix A with entries (a;;) is symmetric by modifying if necessary the first order term: if

. . . . aiitaq;
we decompose a;; = aj; + af; in symmetric and anti-symmetric part, where a;; := =5~ and
aij—aj; .
a% = 20 e obtain
ij 2
n n n n
J— S
i=1 j=1 i=1 j=1
n n
2 o s 02
E Wij O g U = E a5 O U
ij=1 ig=1

Definition 4.1. We say that L is elliptic if ) }',_, a(x)&& > 0forallz € U and € €
R™\ {0}, and we say that L is uniformly elliptic (also called strictly elliptic) if for some
0 > 0wehave 7., a”(x) &5 > 0¢|* forall v € U and § € R™\ {0}.

The goal of the chapter is to study the equation Lu = f for some source term f, in
bounded domains U/, and for some uniformly elliptic second-order linear operator L. As we
have previously noted with Hadamard’s example, the Cauchy Problem for elliptic operators,
even if we can apply the Cauchy-Kovalevskaya theorem to solve it locally and uniquely in
the analytic class, is ill-posed in the C* class (and also, with the same mechanism, in Sobolev
spaces). Thus, we relax the data constraints and only impose a boundary condition on u,
namely u|g, will be given. We will define a setting where we can construct a unique solution
depending continuously on the data, and then we will consider the regularity theory of such
solutions.
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4.2 Solving the Dirichlet problem (coercive case)

Consider the boundary value problem (the Dirichlet problem)

{Lu:f inl, (1)

u=0 ondlU,

where L is the divergence form operator

Lu=— Zn: (%i(aij 8$‘7u) + Zn: b; Oy, u + cu,

ij=1 i=1

with bounded measurable coefficients. If u € C?(U) solves (4.1), then for any v € C*(U) with
v|oyy = 0, integrating by parts (the boundary terms vanish) gives

(f. ) 2@ = /va = / [ Zaij (0z,u)(0r,v) + Zbi (Op,u) v + cuv| =: Blu,v]. (4.2)

ij=1 i=1

Conversely, if u € C%(U) with u|s, = 0 satisfies (4.2), then for every v € C>°(U) another
integration by parts yields (Lu — f,v) 2 = 0, hence, by the fundamental lemma of calculus
of variations, Lu = f in U. Note that (4.2) makes sense for u,v € H{(U); the boundary
condition is encoded by the trace.

Definition 4.2. Let f € L*(U). We say that u € H}(U) is a weak solution to (4.1) if
voe HyU),  Blu,v] = (f,v), (4.3)
where B is defined by (4.2).

Proposition 4.3. Assume f € L*(U) and a;;,b;,c € L=®(U). Letu € C*(U) N HY(U). Then u
is a weak solution to (4.1) if and only if

Lu=f aeinld, u=0 ondlU.

If, in addition, a;; € CY(U) and b;, c, f € C(U), then the identity Lu = f holds pointwise in U,
so u is a classical solution.

Remark 4.4. This expresses the minimal requirement for a generalization of the notion of
solution: it agrees with the classical one whenever sufficient regularity is available.

Proof of Proposition 4.3. (<) Assume Lu = f ae. inU and u = 0 on OU. For v € CX(U),
multiplying the PDE by v and integrating by parts (no boundary term) gives

/ufv:/ulzaij((?xju)(ﬁxiv)+;bi(8miu)v+cuv = Blu,v].

ij=1

By density of C>°(U) in H}(U) this extends to all v € H}(U), hence u is a weak solution.
(=) Assume w is a weak solution: for all v € Hy(U), [, fv = Blu,v]. For v € CZ(U), by
integration by parts we get [, (Lu — f)v = 0 for all v € C°(U), thus by the fundamental

lemma of calculus of variation we get Lu = f in U almost everywhere. Finally, u € Hi(U)
has trace 0 in L?(0U ); since u € C(U), u = 0 on OU pointwise. O
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The main tool for existence and uniqueness is the following generalization of Riesz repre-
sentation theorem.

Theorem 4.5 (Lax-Milgram). Let H be a real Hilbert space with inner product (-,-), and
B : H x H — R a bilinear form that is bounded and coercive:

|Blu, o] < alullullvlla,  Blu,u] = Bllullf  for somea, 8 > 0.
Then for every F' € H* there exists a unique u € H such that Blu,-| = F(-), and

0]
H* "~

ullg < 67| F]
veH\{0} ||UHH

u+, where |F|

We first apply the theorem to the Dirichlet problem, then prove it.

Remark 4.6 (An equivalent norm on H}). We have proved as special case of Gagliardo-
Nirenberg-Sobolev inequality that

Hu||L2(M) S Cp ||VUHL2(U) VU € H&(U)

In particular, if we set
||U||H5(U) = [|[Vull 2@,

then || - || 1) and || - || 3 ) are equivalent norms on Hg (U).

Corollary 4.7. Assume L is in divergence form, uniform elliptic, with bounded measurable
coefficients a;;, withb; = 0, ¢ > 0. Then Lax—Milgram applies with H = H}(U), B as in (4.2),
and F(v) = [, fv for f € L*>(U). Consequently, there exists a unique u € Hg(U) solving (4.3),
and for some C' > 0

lull gz < C 2@y

Proof of Corollary 4.7. (1) Boundedness of B. By the boundedness of the coefficients and
Cauchy-Schwarz, (here the controlling constant C' can vary)

| Blu, v]| < C|[Vullz2 [[Vol[2 + ellull 2 [[v]l 2 < Cl[Vul[2 [Vl 2 = Cllullmyeo [0l e-
(2) Coercivity. With b; = 0 and ¢ > 0,

Blu,u] = / S iy 00y 0) Ou) + / i > 0 / IVl = 0 ully .

1,7=1

(3) Boundedness of F. For v € H}(U),

PO =] [ £1] < 1Mo Iollzn S 1z 190120 = 170 lollngen,
The claim follows from Theorem 4.5, with HUHH(} <6t HFH(H&)* <ot 111 22 ey- O

We recall the following basic theorem in the theory of Hilbert spaces.

Theorem 4.8 (Riesz representation theorem). Let H be a Hilbert space with inner product (-, -).
For every continuous linear functional F' € H* there exists a unique w € H such that

F(v) = (w,v) VveH,
and || F |

e = ||lwla.
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Proof of Theorem 4.5. Fix u € H, then functional v — B[u, v] is linear and bounded, hence by
Riesz there is a unique Au € H with

Blu,v] = (Au,v) Vv e H.
This defines a bounded linear operator A : H — H since, letting ||-|| = ||-||; for simplicity,
lAu|l* = (Au, Au) = Blu, Au] < o [[ul [[Aul| = [ Aull < o [|ul].
Coercivity gives
Bllull* < Blu,u] = (Au,u) < ||Aull [lull = [[Aull > B ||ull,

so A is injective and has closed range, indeed if (Au,) is Cauchy, then (u, ) is Cauchy and
converges to some u, hence by continuity of A we have Au,, — Au. Moreover, if v L Ran(A)
then (Au,v) = 0 for all u, so in particular B[v,v] = (Av,v) = 0, and coercivity forces
v = 0. Recall that for any subspace M C H we have the decomposition H = M @ (M)*,
where S* is the orthogonal subspace of S. Thus Ran(A) is closed and has trivial orthogonal,
hence Ran(A) = H and A is bijective. From || Au| > f]|u|| we get [|[A7!|z+ < 87! Given
F € H*, let w € H be its Riesz representative, F'(v) = (w,v) for all v € H. The unique
solution to Blu,v] = F(v) is u = A~ 'w, indeed F(v) = (w,v) = (Au,v) = Blu,v], and
lull < [A7H [ flw]| = 87" | F' -, using Riesz again. O

Remark 4.9. When B is symmetric, the weak formulation (4.3) is the Euler-Lagrange equation
of the strictly convex functional J(u) := 3B[u,u] — F(u) on Hj(U). Also, in this case the
proof of Lax-Milgram is much easier: (-,-)p := B[, ] is an equivalent inner product for H,
thus we can apply Riesz to (H, (-, -) g) to immediately get Lax-Milgram for symmetric.
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4.3 Solving the Dirichlet problem (degenerate coercive case)

We consider L in divergence form, uniformly elliptic and with a;;, b;, ¢ € L>(U). The associ-
ated bilinear form

B[u,v]—/M(iaijamiuaxjv+ibi&muv+cuv> dx
=1

ij=1
satisfies the energy estimate”’
Vue HyWU),  Bluu] = Bllullfp e — vllullzeq (4.4)

for some 8 > 0 and v > 0 (the case of Corollary 4.7 corresponds to v = 0). Indeed, uniform
ellipticity (of the symmetric part of A = (a;;)) gives (using Cauchy-Schwarz and Young’s
inequality)

B[u,u]:/uZaijamiuawju—l—Z/ubi&muu+/ucu2 (4.5)
' i=1

,j=1

> 0l VullZa@y — bV IVl ey el e2ey — @llullzZe,)

77/72 =
> 2 Vulliae — (% + ) lullfaq,
with b := max; ||b;|| = and & := ||¢|| . Since implies (4.4) with 3 = & and v = 7;—592 +c.
By (4.4), Lu + pu = f has a unique solution u € H} (U) for every p > ~, since the weak
form
B#[“’ U] = B[u7 U] =+ N(ua U)LQ(Z/[)

satisfies Lax—Milgram.

To solve the problem in the degenerate coercive case, that is when Blu, v] is not coercive
but, as seen above, we still have (4.5), we will suitably reformulate it in terms of an abstract
problem of the form (Id — K)u = h in the Hilbert space L? with K : H — H compact, that
means the following.

Definition 4.10. Let H be a Hilbert space. A bounded operator K : H — H is compact if
every bounded sequence (u,,) has a subsequence (K u,,, ) that converges in H.

Remark 4.11. If U is bounded with C"! boundary and T : L?*(U) — H}(U) is bounded, then
the composition K := 10T : L?*(U) — L*(U) is compact, where ¢ : H}(U) — L*(U) is the
(Rellich-Kondrachov) compact embedding.

Definition 4.12 (Adjoint operator). Let H be a Hilbert space and K : H — H a bounded
linear operator. The adjoint of K is the unique bounded linear operator K* : H — H such
that

(Kz,y) = (z, K*y) forallz,y € H.

TFor elliptic operators, the quadratic form u — Bu, u| plays the role of an energy (compare Blu,u| =
J,; IVu|? for L = —A). The inequality (4.4) (in literature also called Garding inequality) shows that this energy
controls the H}-norm (up to lower-order L? terms), hence the name “energy estimate”.
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Remark 4.13. If K is compact than K™ is compact as well (check it).

The main property that we will use is that operators of the form /d — K, with K compact,
are “almost invertible”: their kernel and cokernel H \ Im (/d — K) are finite dimensional.
More precisely, we have the following theorem.

Theorem 4.14 (Fredholm alternative for compact operators). Let H be a real Hilbert space
and K : H — H a compact operator. Then

(i) Ker (Id — K) is finite dimensional;
(ii) Im(Id — K) is closed;
(iii) Im(Id — K) = Ker (Id — K*)*;
(iv) Ker (Id — K) = {0} if and only if Im(ld — K) = H;
(v) dim Ker (Id — K) = dim Ker (Id — K*).
Remark 4.15. This motivates the notion of a Fredholm operator: a bounded linear map 7': X —
Y is Fredholm if Ker T'and Y/ Im T are finite dimensional and Im 7 is closed; its “Fredholm

index” is defined as ind 7" := dim Ker 7" — codim Im 7". For T" = Id — K with K compact one
always has ind 7" = 0.

Definition 4.16 (Adjoint of L). On L*(U{) we define the (formal) adjoint L* of L by
(Lu,v) 2@y = Blu,v] = (u, L'v)p2qy forallu,v € C(U).

For

Lu=—Y" 0{ai;(z) 0ju) +Zb ) Oru + c(x) u,

7,0=1
corresponds to
L*v = — Z 8j(al-j(:c) alv) — Z a@<bz('x) U) + C(%) v.
i,5=1 =1

We now reformulate the Dirichlet problem in terms of (Id — K)u = h and apply the previous
theorem.

Corollary 4.17 (Fredholm alternative, divergence form). Leti/ C R" be bounded with C'!

boundary. Assume L is a divergence-form, uniformly elliptic operator with bounded coefficients,
and let f € L*(U). Consider

Lu=f inlU,
u=0 on OU.

Let L* be the formal adjoint of L (as in the definition above). Exactly one of the following holds:
1. There is a unique weak solution u € Hj(U).
2. The homogeneous problem has a nontrivial solution. Writing

N:= {u € Hy(U) : Lu = 0}, N*:={v e HyU) : L*v =0},
we have dim N = dim N* < oo, and Lu = [ is solvable if and only if
//{fqﬁdx =0 forall¢p € N* (ie. f L N*in L?).
When solvable, the solution set is the affine space u + N for any particular solution u.
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Remark 4.18. The statement resembles the resolution of the matrix equation Ax = b.

Proof of Corollary 4.17. Let B[ -, -] be the bilinear form of L on H} (i) and let (-, - ) denote
the L?(U)-inner product. By the energy estimate

Blu,u] + plluliz > Blulfy — (ve Hy(U))

for some fixed p > 0 (referring to (4.5) take p > 7), Lax—Milgram gives, for every g € LQ(Z/{ ),
a unique w € H}(U) solving

Blw, ¢ + p(w,¢) = (g,6) V¢ € HyU),
with [lw|| g1 < 871 g[ 2. Define the bounded “resolvent”
Ry : L*U) —» HyWU),  Rug=w,
and leti : H}(U) < L*(U) be the compact Sobolev embedding (Rellich-Kondrachov). Set
K:=pioR, : L*(U) — L*U).

Then, by Remark 4.11, K is compact on H := L?(U).
Step 1: Reformulation The Dirichlet problem Lu = f in H; (U) rewrites as

Blu, ¢ = (f,¢) V¢ e HyU).
We claim that for u € L?(U)
(Id— K)u=pu 'Kf ifandonlyif wu € Hj(U)and Blu,-| = (f,),

namely u is a weak solution of Lu = f.
Indeed, if (Id — K)u = p 'K f,thenu = K(u+ p ' f) = pi R, (u+ p~'f), sou € i(H})
and hence u € H}(U). Put z := R, (u+ pu~' f) € H}. By definition of R,,,

Blz,d + p(2.0) = (ut u ' f,6) Vo€ HIU).

Since u = piz, we have (u, @) = 11 (2, ¢), hence Blz, ¢] = u~!(f, ¢) and therefore Blu, ¢] =

(f, ¢) for all ¢.
Conversely, if u € H} and Blu, ¢] = (f, ¢), then Blu, @] + p(u, d) = (f + pu, ¢), so by the

definition of R, u = R,,(f + pu). Applying i and multiplying by 1, pi(R,,(f + pu)) = pi(u),
ie. K(f + pu) = pu, which is equivalent to (Id — K)u = p 'K f.

Step 3: Apply Theorem 4.14. If u € Ker (Id — K), then by Step 1 with f = 0, w € H}(U)
and Blu,-] = 0, i.e. u is a homogeneous weak solution: Ker (Id — K) = N. Likewise,

Ker (Id — K*) = N*, the space of homogeneous weak solutions of the adjoint problem.
By Theorem 4.14 applied to K on H = L*(U):
« If N = Ker (Id — K) = {0}, then (by (iv)) Im (Id — K) = H,so (Id — K)u = p 'K f
has a unique solution v € L% By Step 1 this is the unique weak solution v € Hj (U) of
Lu = f.
« Otherwise, N = Ker (Id — K) # {0} and by (iii)

Im (Id — K) = Ker (Id — K*)* = (N*)*.
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Hence (Id — K)u = p ' K f is solvable if and only if K f | N* in L*(i). But for every
v € N* = Ker (Id — K*) we have K*v = v, so

(K f,0) = (f, K*v) = (f,0),

and therefore K'f | N*if and only if f L N*. Thus Lu = f is solvable if and only if
/ fodxr = 0forall € N*. Finally, by (v), dim N = dim N* < oo, and the solution set

is the affine space u + N.
]
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Remark 4.19. The Fredholm alternative implies in particular that for the Dirichlet problem
above the following two statements are equivalent:

(a) for every f € L?(U) there exists at least one weak solution u € H} (U);

(b) for every f € L*(U) there exists at most one weak solution u € HJ (U).
Indeed, (b) is equivalent to N = Ker (Id — K) = {0}. By Theorem 4.14 this implies N* =
Ker (Id — K*) = {0} and hence Im (Id — K) = Ker (Id — K*)* = H = L?(U), which is (a).
Conversely, (a) says Im (Id — K') = H, so Ker (Id — K*) = {0} and then N = Ker (Id — K) =
{0} by dim N = dim N*, giving (b).
This is the infinite dimensional analogue of the fact that a linear map between finite-dimensional
spaces of the same dimension is injective if and only if it is surjective.

As for the matrix equation Az = b, it is crucial to understand the directions that A only
stretches (eigenvectors) and the corresponding factors (eigenvalues) A which may be complex.
By analogy, for our elliptic operator L we are led to complexify (to not missing eigenvalues,
using that C is an algebraically closed field) and look for A € C such that the operator L — A/
is not invertible.

Remark 4.20 (Complexification). We complexify and look at the Dirichlet problem for u, f :
U — C. The L? and H;} complex Hilbert space are defined with the corresponding inner
products

(u,v) 2 :/ﬂvda:, (1, ) :/W-Vvdx.
u u

All previous results and proofs carry over assuming complex uniform ellipticity

R(D (@) &g) = ol
ij=1
and R(B[-,]) > B ||ul|3» replacing coercivity.
We can then shift by A € C and ask for which A the problem (L — \)u = f is uniquely
solvable for all f € L?(U). The set of such ) is the resolvent set, whose complement is the
spectrum Y of L.

Theorem 4.21 (Spectrum of L). Let L be a divergence-form, uniformly elliptic operator on U
with bounded coefficients a;;,b;, c € L>(U) and consider the Dirichlet condition with u|g, = 0.
Consider the (weak formulation) of the eigenvalue problem

(L= Nu=F.

for f € L*(U),u € HY(U) and \ € C. Then:
1. There exists an at most countable set > C C such that for every A ¢ Y. and every f € L*(U)
there is a unique weak solutionw € H}(U).

2. If ¥ is infinite, writing ¥ = { A\, }x>1, we have | \g| — oc.
3. Foreach A € X, \ is an eigenvalue with finite dimensional eigenspace

EN) = {ue Hy(U): Blu,¢] = X(u,¢)12 Vo € HyU)} # {0}.

4. If a;; = @j;, by = 0, and c is real-valued, then L is self-adjoint with compact resolvent; in
particular
xC (essuinf ¢, +00) C R.
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Proof of Theorem 4.21. Step 1: Reformulation. Fix p@ > -y (where « is given by the energy
estimate (4.5)) and define L, := L + pI. The shifted form B, [u, ¢] := Blu, @] + p(u, )12 is
coercive on H}(U), so by Lax—Milgram, for each f € L?(U) there exists a unique u € H} (U)
such that

Bulu, gl = (fo9)r Yo € Hy(U).
This defines a bounded inverse L' : L*(U) — Hg(U). Leti : Hy(U) — L*(U) be the
compact embedding. Then

T:=iolL,": L*(U) — L*U)

is a compact operator. If u € HJ(U) and f € L*(U), the equation (L — \)u = f is equivalent
to Lyu = (p+ A)u + f. Applying L' and then i gives

I—(p+NT)u=TF. (4.6)

In particular, any weak solution of (L — A\)u = f lies in H} (U).

Step 2: Eigenvalues and eigenspaces (part (iii)). Let X be the set of A € C for which (L —X)u =0
admits a nontrivial weak solution u € H} (U). If A € %, there exists u # 0 with (L — X\)u = 0.
Plugging f = 0 into (4.6) we get

(I —(p+NT)u=0.

Thus u is an eigenvector of 1" with nonzero eigenvalue v = ﬁ Conversely, if Tu = vu with
v # 0, then inserting in (4.6) with f = 0 gives (I — (x + A\)T)u = 0 which is equivalent to
(L — XN)u =0, where A\ = v~! — ;. Hence A € X if and only if v = 1/(p + \) is a nonzero
eigenvalue of 7', and the corresponding eigenspace

EN) = {u € Hy(U) : Blu, ] = Mu, )2 Vo € Hé(?xl)}

is exactly the eigenspace of T for v. Since T is compact on the Hilbert space L*(U), every
nonzero eigenspace of 7' is finite-dimensional. Thus each A € X has a finite-dimensional
eigenspace £ (), which proves part (iii).

Assume, for some M > 0, that ¥ N B(0, M) is infinite, and let (A\y)r>1 C X N B(0, M) be
pairwise distinct. For each k choose uj, € H} (U)\ {0} such that (L — \;)u;, = 0 and normalize
so that ||ug||z2 = 1. As in Step 2, u;, is an eigenvector of the compact operator 7' = i o L;l

with eigenvalue
1

:M‘F)\k.

The eigenvalues v, are pairwise distinct and satisfy

Vg .

1 1

> > =:0 > 0.
et Xel TN T o+ M

lve| =

Let
X :=spanf{u; : k > 1} € L*(U).

Since the wuy, are linearly independent, X is infinite-dimensional. Moreover 7'(X) C X, so
S :=T|x : X — X is a compact operator (on the Hilbert space X).
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We claim that S is invertible and that its inverse is bounded with ||S™!|| < 1/4. Indeed,
every z € X can be written (in the sense of finite sums, and then by density) as x = Z,]::l CrUE
we we get

N
Sr=Tx = Z CrViUL .
k=1
Thus S acts diagonally in the basis {uy}, with Suy = vgug. Since each v # 0, S is injective
and its range contains each uy, (because uj, = v, 1.Sus), hence Ran S contains spanf{ui}. Ran S
is also closed (as ||Sz|| > ¢ ||||), we have Ran .S = X, so S is bijective. On the finite linear
span of {uy} we have

» N N 1Y
HS (Z ckukuk)H = HZ ckukH < SHZ CrpViUL
k=1 k=1 k=1

since || > 0. Hence ||S~!|| < 1/ on this dense subspace, and by continuity S~*: X — X
is bounded with ||S™!|| < 1/§. Therefore the identity on X factorizes as Ix = S~' o S,
a composition of a bounded operator S~! with a compact operator S. Thus Ix is compact
on X. But X is infinite-dimensional, and the identity operator cannot be compact: take an
orthonormal basis of X as sequence, to see that, even if it is bounded, it does not possess
convergent subsequence. This contradiction shows that ¥ N B(0, M) must be finite.

Part (iv) Assume now that a;; = @;;, b; = 0, and c is real-valued. Then we actually have
Blu, u] = Blu, u], thus Blu, u] is real. Then from Blu, u] = A ||u||* we get that X is also real.
and from uniform ellipticity we get

Y

_ Blu] _ )V

= 2 = 2
el 2 ey i

+ essinf e
u

that, with the Poincaré inequality ||u|| ;. < Cp ||Vu|| . for some Cp > 0, proves in particular
¥ C (essinfy ¢, 00). O

Remark 4.22. 1. From the proof we also obtain the resolvent estimate

1L | 2@y—r2en < C(L+ @)™

for 4 > v + 1 and some C' = C(v). Indeed, if u = L' f then testing the weak
formulation with « and using the energy estimate gives

O Vullz: — yllullzz < RBu, u] + pllullze = R(f,w)re < |1 f]lrellullze.

Hence (4 — )|ul%, < I/ lull 2 and [ L 22 < (= 7). For o = 7+ 1,
(u =)' < (v +2)(1+ p)~t, which yields the stated estimate.

When L is self-adjoint with spectrum > C R, one can get a sharper bound ||(L —
N) Y 2mre = d(\, )7 for every A ¢ ¥ (see Reed & Simon book Methods of Modern
Mathematical Physics, Vol I) (not examinable).

2. In the model case L = —A then ¥ = {)\;} C R and these are the harmonic frequen-
cies of the domain U/, at which a U/-shaped drum vibrates.

3. An interesting question, raised by Schuster, Bers and made famous in the 1966 article
“Can One Hear the Shape of a Drum?” by Mark Kac, is whether the sequence of eigenvalues
uniquely determines the shape of /. In dimension 2, it does for convex analytic domains
(Zelditch 2000), but not for some concave polygons (Gordon, Webb and Volpert 1992).
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4.4 Regularity theory of the Dirichlet problem

The goal of this section is to improve the regularity of the solution we have constructed in
Hg(U) so that it satisfies the strong (not just weak) formulation. We also obtain C*°-regularity
under appropriate assumptions on the coeflicients of L and on /. The core elliptic estimate, in
the simplest case —Au = f with u € C°(U), is

/Mf2 —/U(Au)2 — /M (iDiiu)Q - /MmipiiuDjju 4.7)

i=1

where the last equality follows from two integrations by parts and the fact that v has compact
support in . Thus the L?~norm of the full Hessian is controlled by (indeed equal to) the
L?-norm of its trace, and ||u|| 2 is controlled by the datum || f|| 2.

Theorem 4.23 (Interior elliptic regularity). Let L be uniformly elliptic in divergence form, with
bounded coefficients and U bounded. Let k > 2, a;;,b;,c € C*"Y(U), and f € HI2(U). If
u € H'(U) satisfies the weak formulation Blu,-] = (f,-), thenu € HY (U). More precisely, for

anyV CC W CC U there exists C' > 0 (depending on k,V, W U, a,b, c,n) such that

lllisy < € (1 a2y + el zgn )

Remark 4.24. This shows that the solution is strong: u € H?(V) implies Lu = f holds a.e.
in V by testing against v € C2°(V). By Sobolev embedding (Theorem 3.21), if m > n/2
then H™ (V) C C*(V). Hence, if a;;,b;, c € C™ T (U) and f € H™(U) with such m, then
u € CE.(U) and Lu = f holds in the classical sense on U. If the coefficients and f are smooth,

then u is smooth (locally).

To get the result we would like to test the weak formulation with Dy,u (similarly to what
we have done in (4.7)), but we do not have second derivatives for the moment. To overcome
this difficulty we work with a discretized derivative, namely the difference quotients and
study their properties in connection with the weak derivative.

Proof of Theorem 4.23. 1t suffices to prove the case £ = 2, the higher-order case following
by induction. Indeed, assume the estimate is known for some integer m > 2. Suppose
aij, bi,c € C™(U), f € H"'(U), and u is a weak solution. By the induction hypothesis with

k = m we obtain v € H" (U). For each ¢ the weak derivative & = D,u satisfies

Bli, o] = (f.¢) Ve C=U), f = Dof — D;[(Deas;) Dsu] — (9¢bi) Diu — (Dec) u,

which is obtained by testing the weak formulation for u with v = — Dy and integrating by
parts. Since a;;, b;,c € C™ and u € H[", it follows that f € H" *(U), so applying the k = m

estimate to @ yields @ € HJ".(U4) and hence u € H]"'(U) with the stated bound. Thus it
remains to prove the case k = 2.
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Fori € {1,...,n} and |h| < d(V, 0U) define the difference quotient

Alu(z) = u(z + he};) — u(x), reVccl.

For u € H'(U) we have
D(AM) = Al (Du).

Moreover, for V @ W € U there exists C' > 0, independent of h, such that
|ATull 20y < C||Diu]| 23 for all [ small, (4.8)

and conversely if we have the uniform bound ||A”ul|2¢) < C as h — 0 then D;u € L*(V)
and || D;ul| 2y < C' (with the same constant) holds. Fix also W such that V e W e W € U
and let ¢ € C°(W) satisfy ) = 1 on V. For each ¢ € {1,...,n} test the weak formulation
with?

vi= AW AM) € H W), |h] < d(W,0W),

so that
I+ I, + 1. = I,

where?’
I, = / ai;Diu DA (W2 AFu), T = / biDyu A" (W Afu),
U u
1. ::/cuAé_h(wQAZu), Iy = / fA;h(@/)2A2u).
u u
Estimate for I,,. Using the discrete integration-by-parts identities

/WwAz’lcz —/WAch,

valid for w, ¢ supported in W CC W and |h| < d(W, OW), we get

I, = ' / b Diu A (P AJ)
w

— ‘_ / PP AL (b;Diu) Aju
w

— '— /~ w2 [(Thegbi) A?DZU + (A?Z%) Dlui| A?u
w

<C [ w*(atDul + D) Al
w
1/2
<o [ w1atpul) " iatulg + ClDuloml Al agn

1/2
< O (Il + o ([ w1080u) ")

<< [ IDA + Cluli gy,
w

28Observe that this choice is dictated by the fact that for u € C? we have A, "(Alu(x)) — dpu(z), and >
works as cut-off function, taking the square to have it non-negative and to simplify the estimates by Cauchy-
Schwarz in the following.

#To simplify notation we keep the convention that repeated indices are summed over 1,...,n.
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Estimate for I.. Similarly, using discrete integration by parts again,

|IC| -

/cuA[’%qﬁA?u) = ‘—/ Al(cu) p*Alu
u W

—] [ () -+ () a2t

< [0l |EF + %l o] Al
<C [ WAl + Clullsom Ak ulas
< CHDUHLQ(V\;) + OHU||L2(W) < CH“H?{l(W)
Estimate for 1. We need to keep f undifferentiated. We estimate
= | [ £ a7 at| < Iflom 18702810 e
< O fll g2y 1D AFu) | 2oy
1/2
< Clllsam ([ wHIDAME) " + 18kl 200

<< [ WHDAIE + Col sy + Clom IDelzzon
<e /W GIDARP + Ol gz + 1125
Estimate for 1,. Using discrete integration by parts in the /-direction,
—I, = / Ap(as;Diu) Dj(* Aju)
W
= /~ [(Thezam) AhDou + (Agaw) D; u} (1/J2DjAZu + 2¢((%¢)A?u)
w
= /~ ¢2(Thegaij) AZDZU AZ’D]U + 2 /~ (Thezaij) A?Dlu A?U w@w
w W
+ /~ ¢2(A?CLU) Dzu A?DJU -+ 2 /~ (A?CL”) Dlu A?u wajw
W W
>0 [ WAl - ¢ [ waDuDul - © [ |atDulatul - [ Duljalu
w W w W
> e/wwmgz)u\?—e/WwyDAgu\?—csnuuiﬂ(w)
Conclusion. Since —I, = I, + I. — I, combining the above bounds gives, for any ¢ > 0,
o [ wratpuP < e [ DAt + Ol + 1 )

Choosing ¢ > 0 sufficiently small and absorbing the [ 1/?| DA}u|? term into the left-hand side,
we obtain

[ At < ¢ (lulfg, + 110):
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Since 1) = 1 on V), this implies

1AL DUl < € (a2 om + 1 Eap) ).

and letting h — 0 we conclude

el < € (ol g + 1712205 )

Also, testing the equation against u, using uniform ellipticity, Cauchy-Schwarz and Young we
geton W

|| Dul3 §/aiijuDiu:/fu—/biDiuu—/ch

< [ fllzllullze + bzl Dull 2wl 2 + el pollullZ:
< el Dullzz + Ce(llullze + 1£11Z2) < el DullZz + C (I Dullzz + 1 £11Z2).

and we absorb the || Du/|, term in the left-hand side. Combining this bound with the previous
inequality gives the desired interior H? estimate. O

Remark 4.25. 1. One can also prove for operators with analytic coefficients, that solutions
are real-analytic; in particular the interior Cauchy problem with Cauchy data on > C U
that fail to be real-analytic has no solution.

2. This is a local result (away from the boundary). Thus singularities do not propagate in
from the boundary or from rough regions of f; this non-propagation is characteristic of
elliptic (and more generally hypoelliptic) equations. In general, one expects singularities
to propagate along directions where the principal symbol vanishes.

3. Because of locality, the proof only needs uniform ellipticity on compact subsets of {/;
degeneracy may occur near OU.

We finally turn to regularity up to the boundary.

Theorem 4.26 (Boundary elliptic regularity, divergence form). Let U/ C R" be a bounded
domain with OU of class C*, k > 2. Let L be uniformly elliptic in divergence form, with a;; = a;;,
ai; € C*YU), and b;,c € C*2(U). If f € H**(U) andu € H}(U) is a weak solution of
Lu = finlU, then

lull ey < C(llullzzen + 11l r-200)

for some constant C' depending onU, k, n and the coefficients.

Proof. We argue as in the interior case. As in the interior case, the case £ > 2 follows by
induction from the case k = 2. For k = 2 it suffices to assume a;; € C'(U) and b;, c € L>®(U).
By localization, flattening of OlU, and a partition of unity, it is enough to prove a local estimate
near the boundary. Thus we may assume

U= DB(0,1)Nn{z, >0}, V = B(0,5) N {z, > 0},
and choose 1) € C°(B(0,1)) withip =1on V.

For { =1,...,n — 1 and |h| small, consider the tangential difference quotients. Since ¢,
is tangential to {x,, = 0}, for |h| small these are well defined on supp+) C U. Define the
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test function v := —A,"(y2Alu) as in the interior case. For |h| small, v € H}(U) because
u € HJ(U) and 1 has compact support in B(0, 1). The weak formulation

/CLUD]'UDZ"U‘F/biDiU,U‘i‘/CU’U:/fU
12 u u u

holds for all v € H{(U). Plugging in v = —A,"(1)?Alu) and using discrete integration by
parts in the ¢-direction, the product rules and the uniform ellipticity of (a;;), one obtains,
exactly as in the interior case but with only tangential difference quotients,

[ 1atpu < [ wakDu < € (1 g + e + 1Duliags )

for all |h| sufficiently small and all ¢ = 1,...,n — 1, with C' independent of h. Letting h — 0
and using the characterization of weak derivatives by difference quotients, we obtain

DD < (1 g+l +1Dulg). €= Leein= 1.

Thus all D?ju with at least one tangential index (: < n — 1 or j < n — 1) belong to L*(V') with
the same bound.

To control D? u we use the equation. By interior regularity for divergence form operators,
u € HE (U), so we may rewrite

loc
—Di(aiiju) + leZU +cu = f ae. inlU
and we can pass to the non-divergence form (here we use a;; € C''(U) and the interior estimate

u € H}, . (U), so that D;(a;; Dju) = (D;as;) Dyu + a;;D};u holds in the weak sense)

loc

aijD?ju + l;lD@U +cu = f,
where b; := b; + Dja;; € L>*(U). Hence
4Dl =~ Y ayDju—bDu—cu+f.
(4,4)#(n,n)

Uniform ellipticity implies a,, > 6 > 0 a.e. (take £ = e, in the ellipticity inequality),
s0 1/an, € L®(V). All terms on the right-hand side belong to L*(V): the mixed second
derivatives are already controlled, and b;, ¢ € L>, while u, Du, f € L*(U). Therefore

1 )
Du=—(= Y ayDiu—bDu—cu+f)eLA(V),

" (i) #(nyn)
with

12l < C(If iz + Nullzzeo + 1 Dullzzen + Y- 1D3ulliza )-
(4,5)#(n,n)

Combining the tangential estimate with this bound yields

il < C(lullzzen + 1 Dulzzan + 111220 ).

thus, estimating || Dul| ;2 by [[ullz2@) + || fl| 2w, as we did in the interior case, we conclude

el vy < O (Nullzzn + 12
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Remark 4.27. There is also a “pointwise/Hoélder regularity theory” (see the Elliptic PDE Lent
course): maximum principles control u in the interior by its boundary values for classical u €
C?(U), and Schauder estimates (1934) show that if a, b, ¢, f € C*7(U) then u € C*27(If)
fork € Nandy € (0,1).

This concludes the study of the Dirichlet problem. As compared to the Cauchy problem,
one boundary condition has been dropped (that one on dyu) and the Cauchy hypersurface ol
now encloses the domain /. Dropping instead the boundary condition on v and prescribing
that on Oyu results in the Neumann problem

Lu=f inl,
Oyu=g¢g ondl,

For the Neumann problem the functional setup and regularity theory are very similar to the
Dirichlet case (one works in H! and obtains the same interior and boundary H*- and C*-
regularity under analogous assumptions on the coefficients and data), but the operator now
has always a non-trivial kernel (constants). The existence requires a compatibility condition
between f and g (e.g. fu f+ fau g = 0 in the model case . = —A) and uniqueness holds only
up to addition of constants. In particular, one cannot in general reduce a non-homogeneous
Neumann condition to a homogeneous one as we do for Dirichlet problem.

5 Hyperbolicity

5.1 The notion of hyperbolicity

Very roughly, hyperbolic equations are those for which the Cauchy problem (prescribing initial
data on a hypersurface) is the “right” notion of well-posedness in finite regularity. This is the
broad class of PDEs for which some analogue of the Cauchy-Kovalevskaya theorem survives
outside the analytic category.

Let L be a linear differential operator of order £ > 1 on an open set / C R""!, with
coordinates y = (yo, - . ., Yn). We write

Lu = Z aa(y) 9, u.
lal<k
Recall that the principal symbol of L is the homogeneous polynomial of degree k
op(D)(y.n) = > aaly)n®,  neR
|a|=k

Also, a nonzero vector 1) is called characteristic at y if 0,(L)(y,n) = 0. A smooth hypersurface
S C U is non-characteristic at y € S if every nonzero normal vector to S at y is non-
characteristic.

Definition 5.1. Let L be a linear differential operator of order k > 1 on an open set & C R™ "L,
We say that L is (locally) hyperbolic at a point y° € U if there exists a local coordinate system
y = (t,z) € R x R™ in a neighbourhood of y° such that, for every y in that neighbourhood
and every £ € R" \ {0}, the map

ne — op(L)(Y, ne,§), n=(s),
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is a polynomial of degree k in 1, with £ real roots (counted with multiplicity). Also, we say
that L is (locally) strictly hyperbolic at y° if, in addition, for every y in that neighbourhood and
every £ € R™\ {0}, these k real roots in 7, are simple (i.e. pairwise distinct).

Example 5.2 (First-order operators). Consider a first-order operator

n

Lu(y) =Y a;(y) 9y,uly),

J=0

with real coefficients and a(y°) # 0. Its principal symbol is o,(L)(y,n) = >_7_; a;(y) ;-
We can choose new coordinates iy = (¢, z) so that at y" the coefficient of 9; does not vanish,
a(y°) # 0 (if for some choice of ¢t we have a;(y°) = 0, then the hypersurface {t = const} is
characteristic there, and we change coordinates). In these coordinates,

op(L)(W°, 5 €) = ar(y”) e + Z a;(y°) €

For each fixed £ € R" this is a linear polynomial in 7, with the unique real root 17, =

L 0 .
— ZFl—ng)gj Thus any first-order linear PDE with real coefficients is locally hyperbolic
at (90 Yy y yp

of order 1 at points where not all a; vanish.

Example 5.3 (Second-order divergence form operators). We now specialise to second-order
scalar operators in divergence form

)= 320, (D) ,um) + Zb ) + ey uly) = f(w).

with smooth coefficients on R™*!. The principal symbol is the quadratic form

n

op(L)(y,n) = Z ai; (y) nin;, n € R

i.j=0

Fix a point y = y°. By an orthonormal change of variables we can diagonalise the constant
real symmetric matrix A(y") = (a;;(y°))i;, and assume that at y° the principal symbol is
non-degenerate and has Lorentzian signature (1, n) (that is, one eigenvalue is positive and n
are negative, or vice versa). In other words,

op(L) (Y1) = Ao air — Zkzm, i > 0.

=1

Renaming 7,11 = n; and n; = &; for 1 < ¢ < n, the characteristic equation

+177t Z )‘2

has the two real roots .

(>-x¢) 1/2

=1

=+
n )\n+1
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for all £ € R™, so L is hyperbolic of order 2 at ° (indeed, strictly hyperbolic with respect
to t in this case). If we restrict to operators of wave type, meaning that in the coordinates
y = (t, z) the mixed time-space second-order terms in the principal part vanish, i.e. a;(y) =
ajo(y) = 0 for all j > 1, after rescaling the corresponding coordinate and renaming variables
asy = (t,z) € R x R", we can locally rewrite the equation in the form

n

Opu(t,x) = Z O, (Z aij(t, x) Oy, ult, x)) (5.1)

j=1

=Y bilt, ) Dault, ) — b(t, ) pu(t, x) — c(t, ) ult, x) + f(t, ),

i=1
where the matrix (a;;(t, z))1<i j<n is uniformly elliptic:

Z aii(t,z) && > 01€)* forall € € R™ and some 6 > 0.

Q=1
The case (aij) =1d, 06 =0,c=0, f =0, corresponds to the wave equation
Ou := fu — Ayu = 0.

The set {(x,t) : t = 0} is locally a non-characteristic hypersurface so we can hope to solve
a Cauchy problem. In order to go beyond local existence, we will add additional boundary
conditions: given a cylindrical domainUf = (0, 7T") x U, we will specify o and Gyuy—o (initial
data), as well as boundary data in x € OU at each time, resulting in an initial boundary
value problem (IBVP).

5.2 The IBVP for second-order PDEs

We begin with the situation that is closest to the one treated in the previous chapter.

5.2.1 The weak formulation

Let U C R" be a bounded open set with U € C', and fix T' > 0. Set
Ur = (0,T) x U,
and decompose its boundary as
OUr = Xo U Xy U0 Uy,

where

Yo :={0} x U, Sro=AT} x U, J"Ur :=10,T] x OU.

We consider the initial boundary value problem

(02u+ Lu=f inlUy,
u = 1y on X,
(5.2)
Oyu = 9y on X,
(u=0 on O*Ur,
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where f = f(t,x), Yo = o(x) and ¥; = ¢ (z) are given data, and
Lu = —0,, (aij&pju) + b0y, u + cu

with coefficient fields a;;, b;, c smooth on Uy. We assume that a = (a;j) is symmetric and
uniformly elliptic, i.e.

Clij(t,l’) fzfj Z 6‘€|2 for all (t,:z:) € Z/{T, f S Rn,

for some constant ¢ > 0.
As in the previous chapter, we look for a weak formulation that makes sense for u € H'(Uy).
To derive it, start with a classical solution u € C?(Ur) of (5.2) and test the equation against a
function
v e C*(Uy), v=0o0ndUrUXr.

We purposely do not impose v = 0 on ¥, because we want the boundary condition on d;u
at t = 0 to appear in the weak formulation. Thus the boundary condition on 0*Uy is again
encoded in the choice of the function space for the test functions.

Integrating by parts in ¢ and x gives

/ fo = / [— (0u) (D) + a5 (D, u) (Do, v) —i—bi(axiu)v—i—cuv] | . (53)
Ur Ur o

For u € C?(Ur) the combination of (5.3) for all v € C*(Ur) with v = 0 on O* Uy U S,
together with u = ¢y on £y and u = 0 on 0*Uy, is equivalent to the original problem (5.2).
Indeed:

« Testing (5.3) with v € C%°(Uy) and integrating by parts recovers the PDE 02u + Lu = f
in Z/{T.

« Testing (5.3) with v € C*°(Ur) that vanishes on 0*"Uy U X1 but not necessarily on Xy
yields on (11 — Oyu)v = 0 for all such v, hence dyu = 1)1 on 3.

This motivates the following definition.

Definition 5.4 (Weak solutions to the second-order IBVP). Let T' > 0, U C R" be bounded
with U € C', and Uy = (0,T) x U. Assume

f € L2<UT)7 wO € H&(U>7 wl € LZ(U)7

and
Qjj, bi; S LOO(Z/{T)

A function u € H'(Ur) is called a weak solution of (5.2) if its traces satisfy
Upy = o, oty = 0,
and (5.3) holds for every v € H'(Uz) whose trace vanishes on 0*Ur U 7.

Remark 5.5. The phrase “in the trace sense” means that we use the trace operator from
Theorem 3.18
Tr: H'(Up) — L*(Z0) x L*(X7) x L*(0*Uy)

and interpret, for example, w5, = ¢ as an equality in L?(%,) between the trace of u and the
given boundary datum ).
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5.2.2 The energy estimate

The starting point in the study of evolution equations in weak form is the identification of a
priori (energy) estimates. “A priori” means that, before proving existence of solutions, we
temporarily assume that a smooth solution exists and look for a norm on which an estimate
can be propagated from the boundary data into the domain.

To introduce the idea, consider the wave equation

Ou := 0Zu — Ayu =0
onUr = (0,T) x U, for a smooth solution u satisfying
Ut=0 = o, (3tu)|t=0 =1 onU, Uothp = 0

(which implies (0;u)|9+14,, = 0 as well). For ¢t € (0,T), setU; := (0,¢) x U and test the equation
with Ju. Integration by parts gives

2 — U u)l = 1 u 2 u 2
0= /Mt [(05u)(Opu) — (Agu)(Oyu)] : L 0, [(Ohu)? + |V ,ul?]
= %/Et [(Ou)* + |Voul*] — %/ZO [(Beu)? + |Voul?]. (5.4)
Thus the energy

Elul(t) := %/2 [(&u)Q + |qu|2]

is conserved in time: F[u| is the same for all ¢ € (0, T"). In particular, when there is enough
regularity to perform this calculation, the energy identity immediately implies uniqueness.
For example, for the wave equation, if 1)y = 11 = 0, then

1
5/20 [¥7 + | Vaol?] =0,

and (5.4) gives FE[u|(t) = 0forallt € (0,7), hence u = 0 in U
In the general case corresponding to (5.3), one obtains similarly the energy identity

Plul(t) = PLul0) = | [5(00)000)(01,0) = b:(000)(00) = @) + 100 53

1 1

PO =5 | [0+ aydnuds], B0 =5 [ [+ a0, 0,000, 00]

By the uniform ellipticity of (a;;), the spatial part of the energy controls |V u/, so together
with the (9;u)? term we obtain

Elu)(t) 20/2 IV, 2ul?.

Thus if the right-hand side of (5.5) can be estimated in terms of the prescribed data on Uy, we
obtain a uniform bound

ts(lépT)E[u](t) < C'(Iollzr @ + 1allz2w) + 1F 12
(0,

which yields u € L>=(0,T; H'(U)) and 9,u € L>(0,T; L*(U)), where L>=(0, T; X ) is defined

by the space of functions such that ||ul[z(0,7,x) 1= esssup,¢ (o7 [[u(t)|x < oco.
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5.2.3 Uniqueness

In getting uniqueness for the IBVP, we would like to use the energy estimates but for the
moment the regularity is only H'(Ur) and second derivatives need not exist. The main idea
to overcome this difficulty is to swap the roles of u and the test function and to choose a test
function v so that J;v behaves like u, thereby reducing the number of derivatives falling on u
in the estimates.

Theorem 5.6 (Uniqueness of weak solutions). Let T > 0 and U C R" be bounded with
oU € C', and setUy = (0,T) x U. Assume

feLl*Ur), eHU), e L*U),

and

aij, Orasj, b, Vb, ¢ € L= (Urp).
Then there is at most one weak solution of (5.2) in the sense of Definition 5.4.

Proof of Theorem 5.6. Since the problem is linear, the statement is equivalent to proving that
the only weak solution for zero data is the zero solution. We therefore consider wo 1 =0

on U and f = 0 on Uy. We then consider the test function v(¢, x) ft —*s ds which
is in H'(Ur) since u € H'(Ur), and satisfies v = 0 on X7 by constructlon and v=20w =0
on O*Uy since u = 0 on 9*Uy. Standard integration theorems show 9,0 = —ue ' almost

everywhere, and (5.3) yields

0= / [(Oru)ue™™ — a;(95v)(O;v)eM + b(Qiu)v + cwv| =: A+ B
Ur

with (using the symmetry a;; = a;;)
A
A= [ 0 [u’e™ = a;(0w)(Ov)e™ —v'eM] + —/ [w’e™ + a;;(0;v) (0jv)e™ + v2e]
2 Ur 2 Ur

B = / [ i(Ou)v + (¢ — Duv + = (E)taw)(ﬁ v)(0jv)e ] .
Ur
We then bound A from below (using v = 0;v = 0 on Y7 and u = 0 on X))
w oy ] v’ A 2 -\t 2 At Mt
A= / —e +/ [—(@-v)(@jv) + —] + —/ [w?e™ + v*e™ + ai;(0)(05v)e™ ]
Sy 2 s L 2 2 2 Ju,

A
2

> / [wPe™ +v°eM + 6 V0| e
Ur

and then bound | B| from above (using u = v = 0 on 0*Ur)

|B| =

/MT [_@bi)““ — bu(0v) + (¢ — Duv + 5 (8,5%)(6 v)(9;0)e ]

_ 194l + max{9=, 13 ]l + e — 1] + 67" [ Byall, [ b
< A

5 MM 40|V, M.

This implies, with A > ||0;b;||oo + max{6~, 1}|billoo + |c — 1] + 671||0;sa|| 0, that u = 0 on
Ur. O
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Remark 5.7. The conceptual idea behind this argument is to “commute J; '” with the PDE
(at the cost of some lower order error terms). This argument is reminiscent of the vector
field method (1985), widely used to study quasilinear wave equations such as the Einstein
equations. Note that for the wave equation, one can simplify the argument by taking A = 0
and using the boundary term in A (check it).

5.2.4 Existence

We turn to existence. The difficulty is to find an approximation path based on an already
known result of existence for differential equations: we will use the Galerkin method
(1915) which consists in projecting on well-chosen finite dimensional spaces, and using ODE
theory to construct the approximate solutions. These finite-dimensional spaces are given
by the enumeration of a Hilbert orthonormal basis that generalises the Fourier basis: the
eigenfunctions of the Dirichlet problem of the Laplacian on U. The convergence of the scheme
is based on the generalization of the energy estimate (5.4), with an additional difficulty: we
have to provide a “discrete” version of (5.4) on the approximate solutions, uniformly in the
approximation.

Theorem 5.8 (Existence of weak solutions). Given T'" > 0, U C R" open bounded with
oU € CL,Ur = (0,T)x U, f € L}(Ur), o € HE(U), v, € L*(U) anda,b,c € C°(Ur), there
exists a weak solution u € H'(Ur) to (5.2). Moreover, there exists C = C(U, T, a,b,c,n) > 0
such that

ull 1 @iry < C (1 l2@nry + 1ol + 1l 2wy) -

Proof of Theorem 5.8. By a standard density argument it is enough to prove the theorem under
the additional assumptions ¢, ¢y € C°(U) and f € C°(Ur).

Step 1: Dirichlet eigenfunctions. Consider the Dirichlet eigenvalue problem
—Ap=Xp inUCR", v = 0.

By Theorems 4.21 and 4.26 there exists a sequence of eigenpairs (¢, \i )r>1 with o € HYH(U)N
C*°(U) such that
D<M <XN<..., A — 00  ask — oo.

The self-adjointness of (¢ — A)~! (for any fixed p > 0 as in Theorem 4.21) implies that the
eigenfunctions (ip},) are orthogonal in L?(U). Moreover, if we multiply —Ay, = A\ox by ¢y
and integrate by parts, we obtain orthogonality in H}(U) as well:

/ Vo -V, = )\k/ OrPe = A\pOge.
U U

We may therefore choose (})x>1 orthonormal in L?(U) and orthogonal in HJ (U).
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Step 2: Galerkin approximation. For N > 1 we look for

un(t,z) = ZUN:k(t) or(z), te0,T], zeU,

with scalar coefficients uy.(t). That is, we are looking at an ansatz that lives in a finite V-
dimensional space. For an exact solution u one has (u(0, -), ¢x) = (¢, pr) and (O;u(0, -), vx) =
(11, px) for all k. We impose the same identities for the Galerkin approximation in the finite-
dimensional space span{¢s, ..., pn}, e

un(0) = (v, vr), U/N;k(o) = (Y1, 0%), k=1,...,N.

We now impose that uy satisfies the PDE in weak form, but only when tested against the
finite-dimensional subspace span{¢;, ..., ¢x }. More precisely, to choose how the coefficients
up.x(t) evolve, we insert the ansatz for uy into (5.2) and, for each fixed ¢ € [0, 7] and each
k=1,..., N, we require that the weak formulation holds with test function ¢y:

/ [attuN or + aij(Oun ) (050r) + bi(yun ) pr, + b(Orun ) pr + CUNSOk] = / for (5.6)
U U

Inserting uy (t, x) = Y"1, un.(t)pe(x) and using the orthonormality of (i1,) in L*(U), we
obtain

Ul (t) O Ane(t) unee(t) + O Bt ulyo(t) = Cva(t),

/=1 /=1

forallt € [0,7] and k = 1,..., N, where
Avat) = [ (0(t.2)0i0(x) y00(2) + i1, ) i) (o) + elt2) ) ()
Buaelt) = [ 00.2) gulo) ou(o)

Cni(t) = | f(t, ) px(z) d.

pM

This is a linear system of second-order ODEs with continuous coefficients on [0, T, so (after
rewriting it as a first-order system) it has a unique solution (uy )i, € C?*([0,T7]).

Step 3: A uniform H'(Ur) estimate.
We now derive an energy estimate. We multiply (5.6) by u/y,.(t)e
[0,7"] € [0,T), and sum over k:

~M_integrate in t €

/M {(ﬁftuN)(atuN) + aij(é)iuN)( %UN) + bl(azuN)(ﬁtuN)

+ b(Qyun)? + cuN(atuN)] e Mdrds = / (8tuN)fe_’\s dx ds.

U
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By rearranging terms as in the proof of uniqueness, we obtain

% /UT/ % |:<(atu]v(8))2 + ai;(s)(Oiun(s))(Fun(s)) + (uN(s))2> e_’\s} dz ds

#5 [0 s (6)@un () Gy () + ()] s
:/u [%<8taij(3))<81'UN(5)>(8J'UN(5>>—bi<5)(aiuN(5))(atuN(S))

— b(s)(Drun(s))? — (c(s) — Dun(s)(drun(s)) + f(s)((?tuN(s))] e dx ds.

The right-hand side is bounded (using Cauchy-Schwarz, Young’s inequality and the bounded-
ness of the coefficients) above by

T/
RS < C [ (1o () sy + IV (s + v (s) e + 1)) e ds

for some C' > 0 independent of N. On the other hand, using the uniform ellipticity of (a;;),
the left-hand side is bounded below by

LHS > Eluy](T")e™" — Euy](0)

AT Y
+§/ (IlatuN(s)II%z(U)+9||quN(s)II%z(U>+ IIUN(S)II%zw)) e~ ds,
0

where )
Efuy](t) = 5 / (D )? + agg(Dhun) (Duny) + (un)?| da > 0.
¢
For )\ large enough we deduce, absorbing the exponential factors,
Elun)(T) + w3y < € (Blund(0) + 11 224, (5.7)

for some constant C’ > ( independent of N. Letting 7" — T we obtain
p g

a3 iy < € (Elund(0) + 113204 )
with a constant uniform in V.

We now estimate the initial energy. Denote
N N

Wy = Z(wOMDk)LQ(U)SOka Py = Z(%,@k)mw)%@k-

k=1 k=1
By Bessel’s inequality in L?(U),
190 2y < [ollzwy, 192 2y < lldllzz)-

Moreover, using the orthogonality of () in H}(U) and the relation ||V ¢y, ||%2(U) = \;, under
our normalisation ||pg|[z2) = 1, we get

N N
Va5 1220y = Z(%a or) 720 || Vaprlli20) = Z A (Yo, 0k) 120
k=1 k=1

N 2
vx¢k> 2
= Va:¢0> - < HvwaH 5
; ( VA ) mo
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since the sequence (V,pr/+v/Ax) is orthonormal in L?(U). Hence

Blux)(0) < € (IWolldw) + 1l

uniformly in N, and we obtain

e s ny < € (Il + 16113y + 17 sy

with a constant independent of N (recall that H'({7) refers to gradients in both ¢ and x).

Step 4: Compactness and weak derivatives. By the Rellich-Kondrachov theorem, there exists a
subsequence (still denoted uy) converging in L?*(Uz) to some u € L*(Ur), and at the same
time bounded in H'(Ur). Thus, up to extracting a subsequence once more, we may assume

uy — u weakly in H'(Ur), uy — u  strongly in L*(Uy).
Here and below, uy — u weakly in H (Hilbert space) means that

(un,d)u — (u,¢)y for every ¢ € H,

and we used (Banach-Alaoglu theorem) that bounded sets in Hilbert spaces are weakly relatively
compact.

Using our approximation results in Proposition 3.14 on the test functions, one checks that
the derivatives d;uy and d;uy converge weakly to generalised derivatives D;u, Dyu € L*(Ur),
ie.

(atUN,SO)B(uT) — (Dyu, 90)L2(L1T)7 (aiUN7SD)L2(Z/{T) — (Dju, SO)L2(uT)
for any given ¢ € L?(Ur). Thus u € H'(Ur) and D;u, D;u are its weak derivatives.
Step 5: Passage to the limit in the weak formulation. Testing (5.6) against any

m

U (t, ) = va:k(t)cpk(x), m <N,

k=1
with v,,.. € C'([0,T)) and v,,,.4(T') = 0, and integrating over (0, T'), we obtain, by integration
by parts in time,
/ fon,= / <—8tuN OV +0;;0;un OV +b;0iUN Vi +b Oy Uy +cuy vm> — [ N,
Z/{T UT Yo
Using the weak convergence uy — u in H'(Ur) and ¥ — 1), in L*(U), we deduce

fo, = / ( — Dyu Oy, + aijDiu 00y, + b;Djw vy, + b Dy v, + cuvm> — V1 U
UT Z/{T E0

We now identify the class of admissible test functions. The functions v,, of the above form
are dense in

{ve H (Ur) : Vpspuorur = 0},
where 0*"Uy := (0,T) x OU. Indeed, the density follows from the density of the linear span of
(i) in Ho(U).
We prove this last fact. Let V' be the closed linear span of {¢y };>1 in H}(U) and suppose,
for contradiction, that V' # H{(U). Then £ := V+ C H}(U) is a non-trivial closed subspace.
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Because (p — A)~! is self-adjoint and compact on H}(U), it leaves V and F invariant (one
checks that (u — A)~}(V) C V, which implies the same for the orthogonal complement F),
and its restriction

K = (M—A)E:E%E

is again compact, self-adjoint and non-zero. A basic spectral property of compact self-adjoint
operators states that any non-zero compact self-adjoint operator K on a Hilbert space has
at least one non-zero eigenvalue. This contradicts the fact that, by construction, K has no
eigenvalues on E. Hence V = H}(U), i.e. (¢y) is dense in H} (U).

Thus, given any such v, there exists a sequence (v,,,) with v, — v in H'(Ur). Since the
trace operator is continuous from H' (Ur) to L*(X), this implies v,, |5, — v|s, in L*(Z) and

therefore
V1V — / Prv.
Yo o

Passing to the limit in the identity above then yields exactly the weak formulation (5.3) for all
v E Hl <UT> with VS puduy = 0.

Step 6: Initial and boundary conditions. We already know that

un(0,2) = Z(%, o) 2yer(e) = ¥ ().

k=1

Since () is an orthonormal basis of L?(U), Parseval’s identity gives ¢}’ — 1 in L*(U).

Moreover, using —Apy = Ay and the orthonormality of (V. /v/Ax) in L2(U), one checks

that 1) — 1 in H}(U). Since the trace operator H'(Ur) — L*(U) is continuous, the

weak convergence uy — u in H'(Ur) implies uy (0, -) — u(0,-) in L?(U). On the other hand,

un (0, ) = 3" — 1y strongly (hence weakly) in L?(U), so the weak limit must be u (0, -) = 1.
For the boundary condition, note that each uy vanishes on 9*Uy. The set

V= {w e H' (Ur) : wpy, = 0}

is a closed linear subspace of H'(Ur), hence weakly closed. Since uy € V for all N and
uy — uin H'(Ur), the limit u also belongs to V/, i.e. uo=u, = 0. This completes the
proof. [

Remark 5.9. In fact the energy estimate (5.7) established in the proof shows, by keeping the
term Eluy|(1"), T" € (0,T), and taking the limit N — oo, that

E[ul(T") + llulls; @4,y < CEMIO) + [1£11 2204,

so that the solution constructed in the theorem satisfies u € L>(0,T; H'(U)) and d,u €
L>(0,T; L*(U)). Note that although the energy E[u](t) on each time slice is bounded, it is
not always continuous for such weak solutions merely in H(Ur).

5.2.5 Hyperbolic regularity theory

Just like for elliptic PDEs, we want to prove that the weak solutions we have constructed are
more regular and in fact classical (strong) solutions when the coefficients and data are regular
enough. Once more the core idea is best explained on the wave equation (u = 02u— A u = f
in Uy with f, 1y, 11 smooth. The previous theorems 5.6-5.8 show there a unique solution
u € H'(Ur) with the boundary conditions s, = ¥, (O¢u)s, = ¥1 and ujg«, = 0. Let us
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argue a priori, i.e. we assume that u is smooth and we try to establish an estimate on higher-
order derivatives. Then w := O,u satisfies Jw = 0;f in Ur with the boundary conditions
wis, = Oz, = Y1, (Grw)js, = (FFu)iz, = (Astt)is, + (0f)1me = Autho + (0:f)s, and
wip«u; = 0. Then the same energy estimate that we used in the last proof (of existence)
shows E[w](T") + HwH?{é,I(UT/) < Efw](0) + ||atf||%2(uT/) for " € (0, T), which proves that
du = w € H} (Ur). Meanwhile A,u = dyu — f € L?(Ur) implies by the basic ellipticity
estimate that Qfﬂju € L*(Uy) for all 4, j. So finally u € H?(Ur), and by induction we can
bound similarly higher-order derivatives.

Theorem 5.10 (Hyperbolic regularity). Let T > 0 and k > 2 be an integer, and let U C R" be
open, bounded, with OU E_Ck. SetUr = (0,T) x U.
Assume a, b, c € C*(Ur) and

O/ f € L>*(0,T; H*""(U))  foralll=0,....k—1.

Letu € H'(Ur) be the (unique) weak solution to (5.2) given by Theorem 5.8, with initial data
u(0, -) = 1o, and Opu(0, -) = 1)1. Suppose in addition that the time traces of u at t = 0 satisfy

Ou(0,-) € HY(U) fort=0,....k—1,  0Fu(0,-) € L*(U).

Then Oju € L>(0,T; H**(U)) for every { =0,...,k (in particularu € H*(Ur)).
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Proof of Theorem 5.10. Step 1: Reduction to the case k = 2. Under our assumptions on L and U,
the eigenfunctions ¢, € Hj(U) of the Dirichlet problem

Lgpk = )\k@k in U, P = 0 on GU,
are in H*(U) by Theorems 4.23-4.26. For general k > 2, differentiating the equation
&gtu + Lu= f

k —2 times in ¢ shows that each 9;"u (m < k —2) solves a hyperbolic equation of the same type,
with coefficients still in C*~™ and right-hand side involving 0! f and lower-order derivatives
of u, which satisfy the same form of assumptions. If we know the theorem for k = 2, we can
apply it successively to 9;"u for m = 0,...,k — 2 and obtain the full statement. Hence it is
enough to prove the case k = 2.

Step 2: Galerkin approximation and time regularity. In the Galerkin scheme of the previous
proof, we write

un(t,x) = Z unk(t) pr(x),

and the coefficients u ., solve a linear system of second-order ODEs

iy () + Y Anwe(Oune(t) + > Buawe(t)inee(t) = Cui(t).

Because a, b, ¢ € C?(Ur) and f has the assumed time-regularity, the coefficients A .. (t), By.xe(t)
are C? and Cy.;(t) is C' in ¢. Standard ODE theory then implies (uy.x(t))Y_, € C®int. We
can therefore differentiate this system in ¢; denoting vy := O,uy, the differentiated system
is the Galerkin approximation for vy, which solves the linearised equation for 0,u (when
projected against ; from k =1,... N).

Step 3: Energy estimate for Oyuy. We now perform the energy estimate on the differentiated
system. Testing the equation for vy by O2un.x(t) e, integrating over (0,7") x U for T" €
(0,7T), and summing over k = 1, ..., N, we obtain

Bldyun] (') + |9ruxlly 1,y < C (El0un](0) + Blund(0) + 11 304,y + 100 32)

for some constant C' > 0 independent of V.
Step 4: Initial energies and elliptic regularity. At t = 0, the functions uy(0), ;un(0) and
Oyun(0) are the L?-orthogonal projections of g, 11, ¥ onto span{e1, ..., @y }. Therefore

|un(O)|| @y < NYollar@wy,  |[Oun(O)||arwy < Jallarwys  |0xun(0)|| 2wy < W2l 2wy

so E[0yun](0) and Eluy](0) are bounded uniformly in N. Letting 7" — T in the estimate of
Step 3, we obtain uniform bounds

8t2tuN, aiuN € L2(Z/{T) (Z =1,... ,n).

From the equation 8t2tu ~ + Luy = f it follows that aijafju N € LQ(UT) uniformly in N. Since
L is uniformly elliptic in z with C* coefficients and uy (¢, -) € H}(U), we can apply for almost

75



5.2 The IBVP for second-order PDEs 5 Hyperbolicity

every t Theorems 4.23-4.26 to L(t, -)un(t,-) = f(t,-) — Qyun(t,-) € L*(U) with the Dirichlet
boundary condition, thus we get

uy(t,-) € H*(U),

with an estimate independent of N and ¢. Integrating in time, we see that (uy ) is bounded in
H?(Ur) uniformly in N, and hence « € H?(Ur) in the limit N — oo.

Step 5: L>-in-time bounds and passage to the limit. We know that u € L*(0,T; H*(U)) and
we want to promote it to u € L>(0,T; H*(U)). The energy estimates for uy and O,uy also
give, for a constant C' independent of N,

||UN||L°°(O,T;H2(U)) + ||8tUN||L°°(O,T;H1(U)) + ||0752,:UN||L°°(0,T;L2(U)) <C.
By weak compactness, up to a subsequence we have
uy = u in L*(0,T; H*(U)), Oy — G in L*(0,T; H'(U)),

and similarly for dyuy in L*(0,T; L*(U)). Moreover, for a.e. t we have uy(t) — u(t) in
H?(U), so by weak lower semicontinuity

st oy < i inf [ ()] oo

If we set gy(t) = HuN(t)H%,Q(U), the uniform energy bound gives gy € L*(0,7) with
lgn ]l < C?, and Fatou’s lemma yields

T T T
/ ||u(t)H%{2(U) dt < / liminf gy (¢) dt < lim inf/ gn(t)dt < TC?.
0 o N—ooo N—oo [
Thus u inherits the same type of bound as the uy; the same argument applies to d;u and Oy u.
Together with the pointwise-in-time energy estimate and weak lower semicontinuity of the
energy, this shows that

ue L(0,T; HX(U)), o € L=(0,T; H'(U)), 02u € L>(0,T;L*(U)).
O

Remark 5.11. 1. In particular, the theorem is a propagation of regularity result: for k = 2 it
says that if the initial data are already H? (in fact the compatibility condition v, + Lty =
£(0,+) in L*(U) forces ¢y € H?(U) by elliptic regularity), then the solution remains
H?; there is no new smoothing coming from the time evolution. This lack of smoothing
is already clear in the 1D wave equation on R (for simplicity, but the same is true on
bounded intervals using Fourier expansion),

Opt — Ogpu = 0, u(0,z) = up(x), Ou(0,z) = 0.
By d’Alembert’s formula (see Exercise 4.12) we have
u(t, ) = sup(x +t) + suo(x — 1),

so the spatial regularity of u(¢, -) is exactly the same as that of g, for all ¢. For instance,
ifup € H'(R) \ H*(R), then u(t,-) € H'(R) \ H*(R) for every t.

With the same example but with f # 0 and uy = 0 one can check that u gains one space
derivative with respect to f and no gain in ¢ (which is what the statement of our theorem
tells us in this regard).
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2. To make a connection again with the vector fields vector, in the proof of uniqueness
we have “almost commuted” the equation (in weak form) with 9, ! (with an exponential
weight in time), in the proof of existence we have “almost commuted” the equation (in
discretised form) with 0; (with an exponential weight in time), and in this higher-order
regularity estimate we have “almost commuted” the equation (in discretised form) with
02 (with an exponential weight in time) and then used the PDE itself to recover the other
higher-order derivatives.

3. When k = 2 we obtain the PDE as an equality almost everywhere. When k& > 2 4 n/2,
by Sobolev inequalities, we obtain the PDE in the classical sense everywhere (check it).
When k = oo, we obtain that the solution « is smooth.

4. The case k = 1 corresponds to the previous theorem of existence for which the energy
E[u](t) is bounded on each time slice but not necessearily continuous as a function
of t. However as soon as k > 2, the bound dyu € L*®(0,T; H'(U)) implies u €
C°(0,T; H'(U)) (check it). When the latter continuity is true we say that u belongs to
the energy class (that is the class of solutions for which the energy is well-defined and
continuous in time).

5.2.6 Domain of dependence

A crucial feature of hyperbolic equations is the finite speed of propagation of information.
For instance, sound waves travel at a certain maximal speed, depending on the medium,
earthquakes waves travel at a certain maximal speeds, depending on the medium and different
for the longitudinal and transversal waves, and electromagnetic waves travel at the speed of
light. When considering the hyperbolic PDEs of general relativity, the feature implies the
famous principle that “nothing can travel faster than the speed of light”. Let us translate all
this into a precise mathematical estimate. We need a concept of hypersurface never pointing
to a direction that would entail a speed faster than allowed by the equation.

Definition 5.12. Given IV C R" open bounded and 7 € C'*°(V') so that 7y, > 0 and 75y = 0,
we denote the graph of t = 7(x) by S := {(7(x),z) : * € V} C R"™! hypersurface and the
enclosed domain D := {(t,x) : x € V, ¢t € (0,7(x))}. We then say that S is spacelike for
the hyperbolic equation 92u + Lu = f defined in (5.2) if

aij(x)ﬁxﬁ(x)ﬁxﬁ(x) <1

for all z € V, and if so we say that D is a domain of dependence for V.

Theorem 5.13. Given T > 0, U C R" open bounded with 0U € C', Ur = (0,T) x U,
f € HY(Uy), vy € HY(U), v, € L*(U), a,0a,b,Vyb,c € L=Ur), w € H (Ur) a weak
solution to (5.2) according to Definition 5.4, and V' C U open bounded with OV € C' and
7€ C®(V) sothat (V) C (0,T) and 719y = 0 with S := {(7(2),z) : z € V} C R*"!
spacelike, and D := {(t,z) : v € V, t € (0,7(z))}.

Then wp only depends on (Vo) v, (Y1)v and fiy: in particular if 1o, 11 and f are vanishing in
V,thenu =0 inD.

Proof of Theorem 5.13. The proofis similar to that of uniqueness of weak solution (Theorem 5.6),
except that we slightly modify the test function v to make it vanishes outside D. Indeed by
linearity, it is enough to prove that up = 0 as soon as (¢o)jy = (Y1)v = fijyv = 0 (we
have taken f in H!(Ur) in order to be able to define its trace at t = (). We then define
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u(t,z) = ftT(m) u(s,z)e *ds for (t,#) € D and v(t,x) = 0in Ur \ D. We then have
O = —ue M for (t,z) € D and v = 0 elsewhere, and v € H'(Ur) with v = 0 on Xp U 0*Ur;
moreover v = () on Xy since the data are zero on V and on S, so in fact v € Hj (D). Performing
the same estimate as in Theorem 5.6 we obtain

%/ O [uPe™ — a;(8iv) (05v)eM — v?eM] + %/ [WPe™ + a;;(0;0) (9jv)eM + v?eM]
D D
(5.8)

<C (/ [ 2 _)‘t+v2€”+elvmv|2€)‘t}> )
D

The only new point with respect to the proof of uniqueness is the treatment of the boundary
term. We now compute the time-boundary contribution coming from

A= 1/ Oy <U26_)\t — ai;(0) (0;v)e — v? At) dtdz.
D

By Fubini’s theorem D = {(t,z) : x € V, 0 < t < 7(x)}, we can write

T(UC)
2A = / / u e M — a;;(0) (9v)eM — ? ’\t> dtdx

t=7(x)

= / [u2e M — a;5(0) (Ojv)eM — vze’\t} dz
v

= /V (uQ(T(x), a:)e_/\T(x) — aij(&v)(ajv)(T(x),x)e’\T(“”) — vQ(T(:p),x)e’\T(“’)
— w2(0, ) + ai; (9)(9;0)(0, ) + v*(0, x)) dz.

By construction of v we have v(0,2) = 0 and v(7(z), x) = 0 for all z € V| hence the terms
involving v? vanish at both ¢t = 0 and ¢ = 7(z), and do not contribute to the boundary integral.
What remains is a contribution involving u(7(x), z) and V,v(7(x), x).

On the hypersurface S = {(t,x) : t = 7(x)} we have v(7(z),z) = O forallz € V.
Differentiating this identity with respect to x; and using the chain rule gives

0=9;(v(r(z),x)) = (07)(z) (O)(1(2), z) + () (T(x), x).
Hence,
(0)(7(2),2) = —(0;7)(2) (O) (7 (), x) = (Oi7)(2) (T (x), ) e 7).
Substituting this expression for 0;v(7(x), ) into the boundary term yields

%/‘/uZ(T(x),:U) e @) 1—aij(:n)(an)(x)((?ﬂ)(x)] dz.

By the spacelike condition

a;;(2)(0;7)(2)(0;7)(z) <1 forallz €V,

the bracket is nonnegative, and therefore the whole boundary term is nonnegative. Combining
this in (5.8) and choosing A > 0 large enough to absorb the right-hand side, we obtain

/ u?e ™™ =0,
D

which implies © = 0 in D and completes the proof. O
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LECTURE 24

Remark 5.14. 1. We say that the equation has propagation speed at most ¢ > 0 if, for every
xp € R", R > 0 and every solution u with

supp o, supp 1 C B(zo, R),

one has
supp u(t,-) C B(zo, R+ c|t|) forallt € R.

The maximal propagation speed is the infimum of all such c.
Assume now that the principal coefficients of L satisfy

aij(z) && < v|E]? forallz € U, € € R™,

for some constant v > 0. Then the maximal propagation speed is at most /v.
Indeed, fix 7o € R™ and R > 0, and assume supp ¢y, supp ¢; C B(xo, R). Let ¢ > /v
and take ¢t > 0 and x € R" with |x — 2| > R + ct. Set

d := dist(z, B(z, R)) = |z — x| — R > ct.

Choose A with

1
— <A<y
c

Then t/A < ct < d, so we can pick r such that t/A < r < d and set V := B(z, ). Thus
V' N B(xg, R) = 0, so the initial data (assume source f = 0 for simplicity) vanish on V.

Choose 0 < € < 7 so that ;

r—e¢
and then pick ¢; > ¢ so close to ¢ that

<A,

t
r—e

<A

still holds. On V first consider the cone

oY) =—(r—ly—zl), yeV,
T

which satisfies 7o > 0in V, 79 = 0 on 9V, and 7o(x) = ¢; > ¢, but is not smooth at
y = x. We can make it smooth by choosing § € C*°([0, r|) such that

r

6(0)=0, 6(r)=r, 6O(s)=sfors>e, 0<6(s)< forall s € [0, 7].

r—e
Define 7 € C*®(V) by

9(|y—l’|)>’

T(y) :== t1<1— . yeV.

Then7 > 0inV,7 =00n 0V, and 7(z) = t; > t. Moreover, for y # x we have

t Yy— t1 ., t
Vi) = =0y o) — V@)l = 20y — o)) < —— <A

ly — x|’ —€
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Hence, forally € V,
aij(y) 9ir(y) 957 (y) < v|VT(y)] < vA® <1.

Thus the hypersurface
S=A{(s,y):s=7(y)}

is spacelike and
D, ={(s,y):yeV,0<s<7(y)}

is a domain of dependence in the sense of Theorem 5.13. Since the data vanish on V,
Theorem 5.13 implies u = 0 in D,. Moreover, z € V and 0 < t < 7(x) = ty, so
(t,x) € D,, and hence u(t, x) = 0.

Therefore u(t,z) = 0 whenever ¢t > 0 and |z — 2| > R + ct. As ¢ > /v was arbitrary,
we conclude that

supp u(t,-) C B(zo, R+ +/vt) forallt >0,

i.e. the maximal propagation speed is at most /v.

5.3 First-order hyperbolic PDEs and the method of characteristics

The previous discussion about finite speed of propagation shows that there is a local “causal
cone” for the operator: disturbances at a point (¢, z() cannot influence points outside a cone
whose boundary is given (in the principal part) by the vanishing of the symbol

p(x,7,8) = =77 + a;;(2)&E;.

More precisely, the spacelike condition used in Theorem 5.13 reads p(z, 1, —V7) < 0, and
its limiting case p = 0 describes the characteristic directions. After normalising 7 = 1, this
corresponds to directions ¢ satisfying a;;(t,z) {;£; = 1, which generate the characteristic
cones.

In the simplest case of the constant-coefficient wave equation, we proved that a perturbation
at (0, x¢) in the data can only influence points (¢, z) with |z — x| < |t|. Thus the boundary of
the region where influence may occur is {(¢,x) : t > 0, |z — x| = t}, the “light cone” with
vertex at (0, 7o), generated by straight rays z(t) = zo + to with o € S*~1.

This can be related to a formal factorisation of the wave operator

D - 8tt - Az - (at + l'\/ —Ax) (8t - i\/ —A$)7

where each factor corresponds formally to propagation along one family of characteristics.
The operators v/—A, are non-local pseudo-differential operators, and we do not study them
here. However, in dimension n = 1 the situation is more explicit: information propagates
along the lines zy =+ ¢, which are called the bicharacteristics of the PDE. They correspond
to the local factorisation 0y — 0, = (0; — 0,)(0; + O.) and to the rewriting of the PDE
as a first-order (system of) transport equations 0,v + 0,v = 0 for v := Oyu — Ju. In
this section, we focus on the simpler case of a single scalar transport equation, for which
only one characteristic trajectory emanates from each point, and we describe the method of
characteristics for constructing solutions, strong and weak. This is the simplest way to see
why nonlinear hyperbolic PDEs can develop singularities.
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5.3.1 Some examples

Consider for ¢ € R the scalar linear 1d transport equation with constant coefficient:
du+ciu=0, teR, zeR, (5.9)
u(0,2) = up(x), = €R.

It models transport of particles (or molecules, or cars, or thingies...) on a line with algebraic
velocity ¢, and u is the density (or velocity, or else...) of such thingies at time ¢ and point x
along the line. It is easy to check that given uy € C''(R) there is a unique classical solution
u € C'(R?) given by u(t, z) = ug(x — ct). One can also solve the equation with a source term
f by the Duhamel principle. Also, as we shall see, given uy € L>°(R), there is a unique weak
solution u € L*°(R?) given again by u(t, ) = ug(z — ct) (we will do it in the more general
case of variable coefficients).

When ¢ = ¢(x), we obtain a transport equation with variable transport velocity. When
¢ = c[u] depends on the solution, we obtain a nonlinear transport equation. The Burgers
equation (1948) is the Euler equation in 1D for the velocity field u of the fluid when the
density is constant (the nonlinearity is caused by the convection term):

2
Oy + udy,u = Oyu + 0y (%) =0. (5.10)

The Burgers equation (1948) is the one-dimensional Euler equation for the velocity field
u of a fluid with constant density; its nonlinearity comes from the convection term:

2
Ou+udy,u = Ou+ 0, <%> =0. (5.11)

More generally, equations of the form d;u + 9,(C(u)u) = 0 with non-constant C' =
C(u(t,x)) are a standard toy model for nonlinear transport. As an example, consider a one-
lane road with no entry or exit. Assume the typical car length is much smaller than the
observation scale, so that traffic can be modeled as a “continuum”. Let u(t, x) be the car density,
v(t, z) the velocity, and ¢(t, x) the flux at (¢, z) (the rate at which cars pass to point x at time
t, in average). The number of cars in [z, z + dz] at time ¢ is u(¢, z) z, and at time ¢ + 6t it is
u(t + dt, x) 0x. By conservation of cars, this change equals the inflow at 2 minus the outflow
at © 4+ dx between times ¢ and ¢ + dt:

u(t+ dt,x) —u(t, x) N q(t,x + 0x) — q(t, x)

ot o =0

Letting 6t, 0x — 0 yields d;u + 0,.q = 0. This continuity equation expresses conservation
of the number of cars and is a prototype of conservation laws, a subclass of hyperbolic
equations.

To close the model, we need a state equation relating ¢ to u. Here it is given by driver
behavior: we write ¢(¢,z) = u(t, z) C(t, ) (number of cars crossing = per unit time is density
of cars times speed (), and assume C' = C(u(t, z)), i.e. the mean speed depends only on
the locally observed density. The function C(r) is determined experimentally; typically it
decreases, as the speed is higher when there is little traffic and decreases as the density of cars
increases. Even such a simple PDE exhibits formation of discontinuities, which correspond to
the formation of traffic jams.

81



5.3 First-order hyperbolic PDEs and the method of characteristics 5 Hyperbolicity

5.3.2 The linear scalar transport equation with variable coefficients

Given ug € C*(R"™), we consider the following equation

ouu(t,z) + F(t,x) - Vou(t,z) =0, teR, zeR"”
{ wu(t, ) + F(t,2) - Veu(l, o) x (5.12)

u(t =0,2) = up(x), r € R™.

for a variable propagation speed given by a vector field F'(¢,z) € R". We assume F' €
CHR x RY), and |V, F(t,z)| < L for all t, z € R?, for some constant L > 0 (the assumption
on the gradient could be replaced in the sequel by F(t,z) < L (1 + |z|) for all t, z € R?).

Definition 5.15. For each s € R and 2 € R", the characteristic of the transport equa-
tion (5.12) passing through (s, ) is the unique solution

y:t—y(t) e R"

of the ODE

y(t) = Ft,y(1),  yls) = .
We denote this solution by y(t) = Z; (), and call the family (Z; ;); 1er the flow of character-
istics.

We know from the ODE theory, since we are assuming in particular /' continuous in ¢ and
globally Lipschitz in z, these trajectories exist for all s, > 0 and all starting point x € R".
For each s,t € R the map

Zsyr:R" - R", T = Zg ()

is a C''-bijection with inverse Z; s, hence a C''-diffeomorphism. In particular, trajectories
cannot cross: if Z; ;(z1) = Z(x2), uniqueness backward in time implies z; = x5. Although
there is in general no semigroup structure (i.e. one cannot write Z, ; = S;_, for a one-parameter
family (S;),ecg with Sy = Id and S,, o S;, = S;,1-,, since F' depends on t), the flow still
satisfies

Lty 15 © Loty = Ly, foralltg, t1,t2 € R,

again by uniqueness of solutions.

Theorem 5.16. Given uy € C'(R") and F € C'(R"™!) with bounded spatial gradient, the
Cauchy problem (5.12) admits a unique global classical solution v € C'(R"™!). Denoting by
(Zst)s.ter the flow generated by F', the solution is given in implicit form by

u(t, Zou(z)) = uo(z),
and equivalently in explicit form by
u(t, x) = uo(Zyo(z)), teR, zeR"

Remark 5.17. The basic idea behind the theorem is that the solution is transported along the
characteristic trajectories, and hence remains constant on each curve t — Zy (). This method
of characteristics provides a concrete bridge between ODE and PDE theory, and shows in some
cases how to view a PDE as a continuum of ODEs.

More generally, for the inhomogeneous equation

Owu(t,x) + F(t,x) - Veu(t,x) = f(t, z),
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with f € CO(R"™!), one has along characteristics %u(t, Zo,(z)) = f(t, Zo.(x)), so that by
Duhamel’s principle

u(t, Z07t(3c)) = up(x) + /0 f(T, Zoﬁ(x)) dr,

or equivalently

u(t,z) = uo(Zio(z)) +/0 f(1, 2. (2)) dr.

Proof of Theorem 5.16. By uniqueness, any u € C'! solution to (5.12) satisfies by chain rule

< [u(t, Zo.o(2))] = () (8, Zo.1(2)) + (Vau) (t, Zo4(2)) - 01 Z0.4(7)

dt
= O+ F -Vu)(t, Zo(z)) =0,

which shows u(t, Zp+(z)) = u(0, Zyo(z)) = uo(x) since Zyo(z) = = and determines the
solution since Z; is a C'-diffeomorphism for any ¢ € R. To prove existence, consider
w(t,x) = ug (Zo(x)) for t,x € R, which is C' in both variables by composition, and satisfies
the initial condition since Zj o = Id. It also satisfies w(t, Zp+(x)) = ug (Z0 © Zot(x)) = up(x).
By differentiating in time this last equation one gets by chain rule (O;w+F-Vw)(t, Zp+(x)) = 0
for all t,z € R and every y € R” can be written as y = Zy(z) since Zp; : R" — R" is
bijective for any ¢ € R, thus we conclude that O,w + F' - Vw = 0 everywhere, sou = wis a
solution. O

To introduce a notion of weak solution, we restrict to the case of I in divergence-free
vector fields F', this makes the equation in a form of conservation laws. If u and F' are smooth,
then O,u + F' - V,u = 0 is equivalent to dyu + V,, - (Fu) = 0 whenever V,, - F' = 0. This
motivates restricting to divergence-free vector fields F' and taking the weak formulation of
the conservative equation.

Definition 5.18. Let ug € L*(R") and F € C*(R"*!) with sup(, ,)cgn+1 [V F(t, )| < 00
and zero divergence V, - F' = 0. A weak L* solution to (5.12) is a function v € L®(R x R")

such that for all ¢ € C!(R, x R"), (we use R, = [0, c0), so the test function can be non-zero
at the (0, x))

/ / u(t,z) [Opp(t, x) + F(t, x) - Vyp(t, z)] dt do +/ uo(z) p(0,2)dr =0. (5.13)
R+ n n

Theorem 5.19 (Weak-strong uniqueness principle). Let ug € C'(R™) N L>°(R") and F €
CY(R™"1) with the assumptions above. Any classical solution to (5.12) is also a weak solution,
and any weak solution that is C* is also a classical solution.

Proof of Theorem 5.19. A classical solution u(t, z) = uo(Z;0(z)) € L>°(R™"!) by construction,
and given ¢ € C!(R"™!) we recover the weak formulation by integrating the PDE against
and integrating by parts (check it). If u € C'(R™™) N L>(R™*!) is a weak solution, we first
consider (5.13) with test function ¢ € C'}(R* x R") (who support avoids the initial time) and
compute by integration by parts (note all integration by parts use V, - F' = 0)

O:/ u(@tgo—i—F-Vgﬁgo) dtdm:—/ (8tu+F-qu)g0dtda:
Rn+1 R

n+1
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which implies that the PDE holds pointwise. Second we consider ¢ € C'!(R™*!) and compute
Jan (uo(z) — u(0,2)) ¢(0, 2) dz = 0. Since it is true for any ¢ (0, z) € C'(R") we deduce that
the initial condition is satisfied. [

Theorem 5.20. Letug € L>°(R™) and F' € C'(R"™!) with the assumptions as in the definition
of weak solution. There is a unique global weak solution u € L (R x R™) to (5.12), given again

by u(t,x) = ug (Zeo(x)).

Proof of Theorem 5.20. To prove existence, we define u(t, z) := ug(Z;o(x)) € L>°(R™*!), then
given p € C}(R"*!) we compute

/ ult,z)(dp + F - V) dt du = / wo(Zio(x)) [87590 o ngp} dt de
Rn+1

Rn+l

- /Rnﬂ to(X) [a“‘)(t’ Zo4(X)) + F(t, Zou(X)) - Quip(t, Zo,t(X))} dt dX

_ / up (X)L (1. 20, ()] arax = - / uo(X) (0, X) dX
Rn+1 dt n

where we have used the change of variable X = Z; o(z), the chain rule < [o(t, Zo,(X))] =
Ovp(t, Zot(X)) + F - Vap(t, Zp (X)), and an integration by parts in ¢ (keeping X fixed). This
proves that u satisfies the weak formulation. To prove uniqueness, it is enough by linearity to
prove that the weak solution v with zero initial data vy = 0 must be the zero solution. We
follow the dual method. To prove that u = 0, it is enough to prove that for any ) € C'}(R"*1),
there exists p € C}(R"*1) so that 9;p + F - V¢ = ¢ for t > 0, then the weak formulation
on u (with zero initial data) implies fR+><]R" u = 0,and u = 0 ont > 0 (and a symmetric
argument proves u = 0 on ¢ < 0). To prove the claim, we use the proof of existence of classical
solutions with a source term and define, for ¢ > 0 and given ¢ € C}(R™*1),

o(t,x) == @o(Zyp(x / Y(s, Zys(x ds-/ V(s, Zys(x

with the choice of initial data o (z) := — fo (s, Zos(x))ds. Since 1) is compactly supported,
there exist 7' > 0 and R > 0 such that supp ¢ C [0 T x Br(0). Moreover, since F is bounded
on [0,T] x R™, say |F(t,z)| < M, the flow (Zy5)scpo,1) satisfies

| Zos(x) — x| = ’/ F(T, Zoﬁ(x)) dT‘ < Ms < MT.
0

If we choose R’ := R+ MT, then |z| > R'implies |Zy s(z)| > |x|—MT > Rforall s € [0,T7,
hence Zy s(z) ¢ Bg(0). In particular, ¢ (s, Zos(z)) = 0 forall s € [0,7] and |z| > R/, and
thus

T
wo(x) = —/ V(s, Zos(x))ds =0 for|z| > R,
0
s0 o € C(R"). Arguing as above with the uniform Lipschitz bounds for (Z; ;) on [0, T]? and

the spatial support of ¢, we also find R” > 0 such that (¢, ) = 0 whenever |z| > R". Hence
¢ € CY(R, x R"), as required. O
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5.3.3 Nonlinear scalar monodimensional transport equations

Let us consider the nonlinear conservation law
Ou+ 0, (f(u)) = dyu+ §(u) dpu = 0, (5.14)

where f is the flux and F (¢, z) := f (u(t, z)) is the speed of propagation. Given f € C*(R)
with f € L>*(R) and uy € C''(R), we can define the characteristic trajectories Z ;() and the
notion of classical solution as above. Note however that the characteristics now solve

O Zsi(x) = F(t, Zs,t(x)) =¥ (u(t, Zsi(x))), Zss(x) =z,

and therefore depend on the (unknown) solution w. This nonlinear loop means that the
characteristics cannot be computed independently of u, and so cannot be used a priori to
construct the solution as in the linear case.

The key a priori estimate is that, if u is a classical solution, then u stays constant along
characteristic trajectories:

i [u(t, Zo,t(x))] = 8tu(t, ZO,t<x)) + &;U(t, Zoyt(x)) 0t Zo+(x)

dt
— (@u + 7 (u) 8xu) (z&7 Z(),t(a';)) =0,

which implies

u(t, Zoy(x)) = u(0, Zop(z)) = uo(x),
so the value of u along each characteristic is completely determined by the initial data. Hence
the characteristic equation becomes

0 Zo () = f’(u(t, ZO,t(x))) = f,(UO(x))7

and the characteristics are in fact straight lines:

Zos(x) =+t (uo(x)).
When §’ o ug is decreasing, one checks (see Exercise 4.8) that there is a time

T, =— [min(f’ o uo),(x)} B

zeR

u(t, )

Figure 1: Picture of characteristics in the cases f’ o u( increasing and then decreasing.

85



5.3 First-order hyperbolic PDEs and the method of characteristics 5 Hyperbolicity

at which this classical solution breaks down: if the characteristic formula above were to remain
valid beyond 7, two distinct initial points would be mapped to the same position, forcing u to
take two different values there. This corresponds to the formation of a shock (or caustic), and
the solution becomes discontinuous. To continue the solution beyond 7, in a unique way, the
notion of weak L solution is not sufficient (weak solutions are not unique); one introduces
instead entropy solutions in the sense of Kruzhkov (1970) (see Exercise 4.11).
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A Appendix on Hilbert spaces

Everything needed in the course on the theory of Banach and Hilbert spaces can be found
in the appendix D of the book by Evans. We give the proof of the Fredholm alternative for
compact operators.

Proof of Theorem 4.14 (Fredholm alternative for compact operators) (Not examinable). (i) WithT" :=
Id — K, the unit ball of Ker 7" is compact since © = Ku for u € KerT' and K is compact;
hence Ker 7' is finite-dimensional.

(ii) Let () converge in Im 7', so u,, = v,, — Kv,, for some (v,,). Decompose v,,, = wy, + h,
with w,, € Ker T and h,,, € (Ker T')*. Since Tw,,, = 0, we have u,, = h,, — Khp,. If (h,,) is
bounded, compactness of K gives a subsequence (K h,,, ) converging, hence (h,,, ) converges
and u., € Im7T. If (h,,) is unbounded, set By = hon /|| B ||; then b — Khy, — 0, s0 a
subsequence converges to some ho, € Ker T with ||hs|| = 1, contradicting k., € (Ker T')*.
Thus Im 7" is closed.

(iii) Using (ii) and Ker T* = (Im T+, we get InT = (Ker T*)*. The adjoint of a compact
operator is compact.

(iv) By (iii) it suffices to prove: if Im T' = H, then Ker T' = {0}. If Ker T* C Ker T**! for all
k, one builds an orthonormal sequence (uy) with u;, € Ker 7%+ N (Ker T%)+, and then (Kuy,)
has no convergent subsequence, contradicting compactness. Hence Ker T* = Ker T*o*! for
some ko; if kg > 1, pick 0 # u € Ker T ko \ Ker Tko—1 write u = Tv (surjectivity), and deduce
v € Ker T*, a contradiction. Thus Ker T' = {0}; the converse follows by applying the same
argument to K*.

(v) Both kernels are finite-dimensional by (i). If one is trivial, (iii)—(iv) give that the other is
trivial. Otherwise, reduce dimensions one by one by adding a rank-one perturbation and use
induction. O

The following is a list of results in the theory of Hilbert spaces that we used in the course.

« Riesz representation theorem. For any Hilbert space H and F' € H* there exists a unique
y € H with F(v) = (v,y) forallv € H, and ||F|| = ||y||. Hence H* = H.

 Adjoint of a bounded operator. For bounded 1" : H — H there is a unique bounded 7
such that (T'u,v) = (u, T*v) for all u,v € H. In particular (T*)* =T, |T*| = ||T
(TS)* = S*T*, and (ImT)* = Ker T* so Im T = (Ker T*)*.

« Spectrum of compact operators. If K is compact on infinite dimensional H, every nonzero
spectral value is an eigenvalue of finite multiplicity and 0 is the only possible accumula-
tion point; if K is selfadjoint, all eigenvalues are real (and there is an orthonormal basis
of eigenvectors).

5

Also, in the theorem of existence of weak solutions for wave type equations we used the
following basic spectral property of compact self-adjoint operators.

Lemma A.1. Any non-zero compact self-adjoint operator K on a Hilbert space has at least one

non-zero eigenvalue. This contradicts the fact that by construction K has no eigenvalues on E.
This contradiction shows that V = H}(U), i.e. (¢y,) is dense in Hy (U).

Proof. (Not examinable) First, one shows
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which follows from the polarization identity. Choose a sequence (u,,) with ||u,,|| = 1 such
that (Kuy,, u,,) — [|K||. Since K is compact, (Ku,,) has a convergent subsequence (still
denoted (Ku,,)), say Ku,, — v in the Hilbert space. Passing to the limit in

(K, ) = (v, u4), for some weak limit u, of (u,,),
one checks that v = || K || u, (or v = —|| K| u.), hence u, # 0 and Ku, = +| K| u,. Thus
+|| K || is an eigenvalue of K, O
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